{"title":"考虑岩心损失的微胶囊单轴压缩力学响应模型及参数分析","authors":"Hua Huang, Huiyang Huang, Ruotong Wang, Yaqiong Fan, Runlan Guo","doi":"10.1007/s00419-023-02457-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microcapsules are widely used in various fields. However, there is no way to predict the mechanical response of microcapsules accurately. To address this problem, the improved Reissner theory and the Tatara theory are employed to establish the mechanical response models of the capsule shell and the capsule core, respectively. Moreover, the capsule core loss, which is always neglected in prior study, is obtained through the mass ratio of the capsule core. Therefore, a universal and effective mechanical response model with microcapsule characteristics is developed. In addition, a set of orthogonal tests are designed based on the mechanical response model to analyze the contributions of the microcapsule components to the mechanical response. The results show that: (1) the proposed microcapsule mechanical response model has prediction errors of less than 30% for various types of microcapsule mechanical response results, and the gray correlation degree of the prediction trend is above 0.6. Compared to traditional models that can only predict trends, with an error rate of 400%, the proposed model has an improvement; (2) the loss of core is inevitable, and the three microcapsules in the study all have a core loss volume of 10–30%; (3) when the strain is large, the mechanical response of overall microcapsules is determined by the size and core of microcapsules. The results provide a theoretical basis for designing the microcapsules.\n</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"93 9","pages":"3625 - 3636"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical response model with core loss of microcapsules under uniaxial compression and its parameters analysis\",\"authors\":\"Hua Huang, Huiyang Huang, Ruotong Wang, Yaqiong Fan, Runlan Guo\",\"doi\":\"10.1007/s00419-023-02457-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microcapsules are widely used in various fields. However, there is no way to predict the mechanical response of microcapsules accurately. To address this problem, the improved Reissner theory and the Tatara theory are employed to establish the mechanical response models of the capsule shell and the capsule core, respectively. Moreover, the capsule core loss, which is always neglected in prior study, is obtained through the mass ratio of the capsule core. Therefore, a universal and effective mechanical response model with microcapsule characteristics is developed. In addition, a set of orthogonal tests are designed based on the mechanical response model to analyze the contributions of the microcapsule components to the mechanical response. The results show that: (1) the proposed microcapsule mechanical response model has prediction errors of less than 30% for various types of microcapsule mechanical response results, and the gray correlation degree of the prediction trend is above 0.6. Compared to traditional models that can only predict trends, with an error rate of 400%, the proposed model has an improvement; (2) the loss of core is inevitable, and the three microcapsules in the study all have a core loss volume of 10–30%; (3) when the strain is large, the mechanical response of overall microcapsules is determined by the size and core of microcapsules. The results provide a theoretical basis for designing the microcapsules.\\n</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"93 9\",\"pages\":\"3625 - 3636\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-023-02457-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-023-02457-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Mechanical response model with core loss of microcapsules under uniaxial compression and its parameters analysis
Microcapsules are widely used in various fields. However, there is no way to predict the mechanical response of microcapsules accurately. To address this problem, the improved Reissner theory and the Tatara theory are employed to establish the mechanical response models of the capsule shell and the capsule core, respectively. Moreover, the capsule core loss, which is always neglected in prior study, is obtained through the mass ratio of the capsule core. Therefore, a universal and effective mechanical response model with microcapsule characteristics is developed. In addition, a set of orthogonal tests are designed based on the mechanical response model to analyze the contributions of the microcapsule components to the mechanical response. The results show that: (1) the proposed microcapsule mechanical response model has prediction errors of less than 30% for various types of microcapsule mechanical response results, and the gray correlation degree of the prediction trend is above 0.6. Compared to traditional models that can only predict trends, with an error rate of 400%, the proposed model has an improvement; (2) the loss of core is inevitable, and the three microcapsules in the study all have a core loss volume of 10–30%; (3) when the strain is large, the mechanical response of overall microcapsules is determined by the size and core of microcapsules. The results provide a theoretical basis for designing the microcapsules.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.