AMPK介导的自噬调节高糖诱导的肠上皮细胞炎症细胞因子表达

IF 0.6 4区 医学 Q4 IMMUNOLOGY European Journal of Inflammation Pub Date : 2022-05-01 DOI:10.1177/1721727X221106506
K. Ma, Yun Li, Xiaolin Dong, Jingjing Guo
{"title":"AMPK介导的自噬调节高糖诱导的肠上皮细胞炎症细胞因子表达","authors":"K. Ma, Yun Li, Xiaolin Dong, Jingjing Guo","doi":"10.1177/1721727X221106506","DOIUrl":null,"url":null,"abstract":"Introduction: The homeostasis of intestinal epithelial cells (IECs) is disrupted in diabetes, leading to functional changes of the gastrointestinal tract and increasing the risk of diabetic enteropathy. Methods: The aim of this study is to explore the effect of autophagy on the expression of inflammatory factors under high glucose in vitro. The effect of glucose at different concentrations (5, 10, 30 and 50 Mm) on IEC-6 cells was analyzed. Dorsomorphin (AMPK antagonist) and GSK621 (AMPK agonist) were used to examine the relationship between the autophagy and the AMPK/ULK1 signaling pathway in IEC-6 cells. Results: Our results showed that the high glucose significantly inhibited the growth of IECs, and induced more shrinkage and necrosis of cells. Autophagy was inhibited by high glucose. Furthermore, the levels of cytokines, including IL-22, INF-γ, NOS2, and TNF-α, were significantly increased, which were positively correlated with glucose concentration. Additionally, we confirmed that Dorsomorphin down-regulated the expression of p-AMPK and autophagy protein compared with GSK621. Similar, cellular immunofluorescence also detected low autophagy expression. However, GSK621 and Rapamycin increased the level of autophagy and down-regulated the secretion of pro-inflammatory factors compared with Dorsomorphin. Conclusion: Therefore, our results demonstrate that AMPK mediated autophagy may regulate levels of inflammation in IECs and improve cell survival under high glucose.","PeriodicalId":55162,"journal":{"name":"European Journal of Inflammation","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMPK-mediated autophagy modulates the inflammatory cytokine expression in intestinal epithelial cells induced by high glucose\",\"authors\":\"K. Ma, Yun Li, Xiaolin Dong, Jingjing Guo\",\"doi\":\"10.1177/1721727X221106506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The homeostasis of intestinal epithelial cells (IECs) is disrupted in diabetes, leading to functional changes of the gastrointestinal tract and increasing the risk of diabetic enteropathy. Methods: The aim of this study is to explore the effect of autophagy on the expression of inflammatory factors under high glucose in vitro. The effect of glucose at different concentrations (5, 10, 30 and 50 Mm) on IEC-6 cells was analyzed. Dorsomorphin (AMPK antagonist) and GSK621 (AMPK agonist) were used to examine the relationship between the autophagy and the AMPK/ULK1 signaling pathway in IEC-6 cells. Results: Our results showed that the high glucose significantly inhibited the growth of IECs, and induced more shrinkage and necrosis of cells. Autophagy was inhibited by high glucose. Furthermore, the levels of cytokines, including IL-22, INF-γ, NOS2, and TNF-α, were significantly increased, which were positively correlated with glucose concentration. Additionally, we confirmed that Dorsomorphin down-regulated the expression of p-AMPK and autophagy protein compared with GSK621. Similar, cellular immunofluorescence also detected low autophagy expression. However, GSK621 and Rapamycin increased the level of autophagy and down-regulated the secretion of pro-inflammatory factors compared with Dorsomorphin. Conclusion: Therefore, our results demonstrate that AMPK mediated autophagy may regulate levels of inflammation in IECs and improve cell survival under high glucose.\",\"PeriodicalId\":55162,\"journal\":{\"name\":\"European Journal of Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1721727X221106506\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1721727X221106506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

引言:糖尿病患者肠道上皮细胞(IEC)的稳态被破坏,导致胃肠道功能变化,增加糖尿病肠病的风险。方法:本研究旨在探讨自噬对高糖条件下炎症因子表达的影响。分析了不同浓度(5、10、30和50Mm)的葡萄糖对IEC-6细胞的影响。Dorsomorphin(AMPK拮抗剂)和GSK621(AMPK激动剂)用于检测IEC-6细胞中自噬与AMPK/ULK1信号通路之间的关系。结果:我们的结果表明,高糖显著抑制了IECs的生长,并诱导了更多的细胞收缩和坏死。高糖抑制自噬。此外,包括IL-22、INF-γ、NOS2和TNF-α在内的细胞因子水平显著升高,这与葡萄糖浓度呈正相关。此外,我们证实Dorsomorphin与GSK621相比下调p-AMPK和自噬蛋白的表达。类似地,细胞免疫荧光也检测到低自噬表达。然而,与Dorsomorphin相比,GSK621和雷帕霉素增加了自噬水平,并下调了促炎因子的分泌。结论:因此,我们的研究结果表明,AMPK介导的自噬可能调节IEC的炎症水平,并提高细胞在高糖下的存活率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AMPK-mediated autophagy modulates the inflammatory cytokine expression in intestinal epithelial cells induced by high glucose
Introduction: The homeostasis of intestinal epithelial cells (IECs) is disrupted in diabetes, leading to functional changes of the gastrointestinal tract and increasing the risk of diabetic enteropathy. Methods: The aim of this study is to explore the effect of autophagy on the expression of inflammatory factors under high glucose in vitro. The effect of glucose at different concentrations (5, 10, 30 and 50 Mm) on IEC-6 cells was analyzed. Dorsomorphin (AMPK antagonist) and GSK621 (AMPK agonist) were used to examine the relationship between the autophagy and the AMPK/ULK1 signaling pathway in IEC-6 cells. Results: Our results showed that the high glucose significantly inhibited the growth of IECs, and induced more shrinkage and necrosis of cells. Autophagy was inhibited by high glucose. Furthermore, the levels of cytokines, including IL-22, INF-γ, NOS2, and TNF-α, were significantly increased, which were positively correlated with glucose concentration. Additionally, we confirmed that Dorsomorphin down-regulated the expression of p-AMPK and autophagy protein compared with GSK621. Similar, cellular immunofluorescence also detected low autophagy expression. However, GSK621 and Rapamycin increased the level of autophagy and down-regulated the secretion of pro-inflammatory factors compared with Dorsomorphin. Conclusion: Therefore, our results demonstrate that AMPK mediated autophagy may regulate levels of inflammation in IECs and improve cell survival under high glucose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
54
审稿时长
15 weeks
期刊介绍: European Journal of Inflammation is a multidisciplinary, peer-reviewed, open access journal covering a wide range of topics in inflammation, including immunology, pathology, pharmacology and related general experimental and clinical research.
期刊最新文献
Alterations and predictive value of blood routine parameters in patients with lupus enteritis: A retrospective study Effects of orthodontic treatment on porphyromonas gingivalis, gingipains and gingival inflammation Experience in early diagnosis of pyoderma gangrenosum: A case report Enhancing knowledge and practices toward Vitamin D deficiency through implementing awareness programs among medical science female students Pulmonary tuberculosis in a case of acute myeloid leukemia during consolidation chemotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1