抗生素的通道形成能力与膜脂质组成的关系

S. S. Efimova, E. V. Shekunov, D. N. Chernyshova, A. A. Zakharova, O. S. Ostroumova
{"title":"抗生素的通道形成能力与膜脂质组成的关系","authors":"S. S. Efimova,&nbsp;E. V. Shekunov,&nbsp;D. N. Chernyshova,&nbsp;A. A. Zakharova,&nbsp;O. S. Ostroumova","doi":"10.1134/S1990747822020039","DOIUrl":null,"url":null,"abstract":"<p>The role of various membrane components, phospholipids and lipopolysaccharides, in the formation and functioning of ion channels formed by lantibiotics of class A, nisin, and class B, cinnamycin and duramycin, was studied. Threshold concentrations of the tested lantibiotics were determined that cause ion channel formation and destruction of planar lipid bilayers. It was found that nisin was able to form ion channels with a conductance in the range from 2 to 600 pS at a concentration of more than 40 μM both in negatively charged lipid bilayers containing a specific adjuvant of gram-negative bacterial membranes, Kdo<sub>2</sub>–lipid A, and in cardiolipin-containing membranes. The obtained results allowed suggesting that in model lipid membranes without lipid II, a precursor of peptidoglycan of gram-positive bacteria, which is a specific receptor of nisin, its role can be performed by Kdo<sub>2</sub>–lipid A and cardiolipin. It was found that cinnamycin and its close analogue duramycin at concentrations of 1.5–3 μM induced step-like current fluctuations corresponding to the functioning of single ion channels with amplitudes from 5 to 30 pS and from 50 to 900 pS in membranes of phosphatidylethanolamine and cardiolipin-enriched bilayers, respectively. Based on the results obtained, we conclude that the channel-forming ability of cinnamycin and duramycin depends on the presence in the membrane of lipids prone to the formation of inverted hexagonal phases and the induction of spontaneous negative curvature in lipid monolayers.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Dependence of the Channel-Forming Ability of Lantibiotics on the Lipid Composition of the Membranes\",\"authors\":\"S. S. Efimova,&nbsp;E. V. Shekunov,&nbsp;D. N. Chernyshova,&nbsp;A. A. Zakharova,&nbsp;O. S. Ostroumova\",\"doi\":\"10.1134/S1990747822020039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The role of various membrane components, phospholipids and lipopolysaccharides, in the formation and functioning of ion channels formed by lantibiotics of class A, nisin, and class B, cinnamycin and duramycin, was studied. Threshold concentrations of the tested lantibiotics were determined that cause ion channel formation and destruction of planar lipid bilayers. It was found that nisin was able to form ion channels with a conductance in the range from 2 to 600 pS at a concentration of more than 40 μM both in negatively charged lipid bilayers containing a specific adjuvant of gram-negative bacterial membranes, Kdo<sub>2</sub>–lipid A, and in cardiolipin-containing membranes. The obtained results allowed suggesting that in model lipid membranes without lipid II, a precursor of peptidoglycan of gram-positive bacteria, which is a specific receptor of nisin, its role can be performed by Kdo<sub>2</sub>–lipid A and cardiolipin. It was found that cinnamycin and its close analogue duramycin at concentrations of 1.5–3 μM induced step-like current fluctuations corresponding to the functioning of single ion channels with amplitudes from 5 to 30 pS and from 50 to 900 pS in membranes of phosphatidylethanolamine and cardiolipin-enriched bilayers, respectively. Based on the results obtained, we conclude that the channel-forming ability of cinnamycin and duramycin depends on the presence in the membrane of lipids prone to the formation of inverted hexagonal phases and the induction of spontaneous negative curvature in lipid monolayers.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747822020039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747822020039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

研究了各种膜组分磷脂和脂多糖在A类抗菌素、nisin和B类抗菌素、肉桂霉素和杜拉霉素形成的离子通道的形成和功能中的作用。测定了引起离子通道形成和破坏平面脂质双层的阈值浓度。结果发现,在浓度大于40 μM时,nisin能够在含有革兰氏阴性菌膜特异性佐剂kdo2 -脂质a的带负电荷脂质双分子层和含心磷脂的膜中形成电导范围为2 ~ 600 pS的离子通道。上述结果提示,在没有革兰氏阳性菌肽聚糖前体、nisin特异性受体脂质II的模型脂膜中,其作用可由kdo2 -脂质a和心磷脂完成。研究发现,肉桂霉素及其类似物duramycin在1.5 ~ 3 μM的浓度下,可在磷脂酰乙醇胺膜和富心磷脂双层膜中分别诱导5 ~ 30ps和50 ~ 900ps的阶状电流波动,与单离子通道的功能相对应。基于所获得的结果,我们得出结论,肉桂霉素和杜拉霉素的通道形成能力取决于脂质膜中容易形成倒六角形相和诱导脂质单层自发负曲率的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Dependence of the Channel-Forming Ability of Lantibiotics on the Lipid Composition of the Membranes

The role of various membrane components, phospholipids and lipopolysaccharides, in the formation and functioning of ion channels formed by lantibiotics of class A, nisin, and class B, cinnamycin and duramycin, was studied. Threshold concentrations of the tested lantibiotics were determined that cause ion channel formation and destruction of planar lipid bilayers. It was found that nisin was able to form ion channels with a conductance in the range from 2 to 600 pS at a concentration of more than 40 μM both in negatively charged lipid bilayers containing a specific adjuvant of gram-negative bacterial membranes, Kdo2–lipid A, and in cardiolipin-containing membranes. The obtained results allowed suggesting that in model lipid membranes without lipid II, a precursor of peptidoglycan of gram-positive bacteria, which is a specific receptor of nisin, its role can be performed by Kdo2–lipid A and cardiolipin. It was found that cinnamycin and its close analogue duramycin at concentrations of 1.5–3 μM induced step-like current fluctuations corresponding to the functioning of single ion channels with amplitudes from 5 to 30 pS and from 50 to 900 pS in membranes of phosphatidylethanolamine and cardiolipin-enriched bilayers, respectively. Based on the results obtained, we conclude that the channel-forming ability of cinnamycin and duramycin depends on the presence in the membrane of lipids prone to the formation of inverted hexagonal phases and the induction of spontaneous negative curvature in lipid monolayers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
期刊最新文献
The Rhodopsin Project To the 90th Anniversary of the Birth of Academician Yuri Anatolievich Ovchinnikov Alterations of Store-Operated Calcium Entry in Neurodegenerative Pathologies: History, Facts, and Prospects Structural Studies of Ion Channels: Achievements, Problems, and Perspectives Structure and Functions of the OTOP1 Proton Channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1