基于信息粒化的支持向量机在核电厂主变压器异常检测中的应用

IF 1 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY Science and Technology of Nuclear Installations Pub Date : 2022-06-03 DOI:10.1155/2022/3931374
Wenmin Yu, Ren Yu, Cheng Li
{"title":"基于信息粒化的支持向量机在核电厂主变压器异常检测中的应用","authors":"Wenmin Yu, Ren Yu, Cheng Li","doi":"10.1155/2022/3931374","DOIUrl":null,"url":null,"abstract":"The main transformer is critical equipment for economically generating electricity in nuclear power plants (NPPs). Dissolved gas analysis (DGA) is an effective means of monitoring the transformer condition, and its parameters can reflect the transformer operating condition. This study introduces a framework for main transformer predictive-based maintenance management. A condition prediction method based on the online support vector machine (SVM) regression model is proposed, with the input data being preprocessed using the information granulation method, and the parameters of the model are optimized using the particle swarm optimization (PSO) algorithm. Using DGA data from the NPP data acquisition system, two experiments are designed to verify the trend tracing and prediction envelope ability of main transformers installed in NPPs with different operating ages of the proposed model. Finally, how to use this framework to benefit the maintenance plan of the main transformer is summarized.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Information Granulated Based SVM Approach for Anomaly Detection of Main Transformers in Nuclear Power Plants\",\"authors\":\"Wenmin Yu, Ren Yu, Cheng Li\",\"doi\":\"10.1155/2022/3931374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main transformer is critical equipment for economically generating electricity in nuclear power plants (NPPs). Dissolved gas analysis (DGA) is an effective means of monitoring the transformer condition, and its parameters can reflect the transformer operating condition. This study introduces a framework for main transformer predictive-based maintenance management. A condition prediction method based on the online support vector machine (SVM) regression model is proposed, with the input data being preprocessed using the information granulation method, and the parameters of the model are optimized using the particle swarm optimization (PSO) algorithm. Using DGA data from the NPP data acquisition system, two experiments are designed to verify the trend tracing and prediction envelope ability of main transformers installed in NPPs with different operating ages of the proposed model. Finally, how to use this framework to benefit the maintenance plan of the main transformer is summarized.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3931374\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/3931374","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

主变压器是核电厂经济发电的关键设备。溶解气体分析(DGA)是监测变压器状态的有效手段,其参数可以反映变压器的运行状况。介绍了一种基于预测的主变压器维修管理框架。提出了一种基于在线支持向量机(SVM)回归模型的状态预测方法,对输入数据进行信息粒化预处理,并采用粒子群优化(PSO)算法对模型参数进行优化。利用NPP数据采集系统的DGA数据,设计了两个实验,验证了该模型对不同运行年限的NPP主变压器的趋势跟踪和预测包络能力。最后总结了如何利用该框架有利于主变压器的维护计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Information Granulated Based SVM Approach for Anomaly Detection of Main Transformers in Nuclear Power Plants
The main transformer is critical equipment for economically generating electricity in nuclear power plants (NPPs). Dissolved gas analysis (DGA) is an effective means of monitoring the transformer condition, and its parameters can reflect the transformer operating condition. This study introduces a framework for main transformer predictive-based maintenance management. A condition prediction method based on the online support vector machine (SVM) regression model is proposed, with the input data being preprocessed using the information granulation method, and the parameters of the model are optimized using the particle swarm optimization (PSO) algorithm. Using DGA data from the NPP data acquisition system, two experiments are designed to verify the trend tracing and prediction envelope ability of main transformers installed in NPPs with different operating ages of the proposed model. Finally, how to use this framework to benefit the maintenance plan of the main transformer is summarized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Nuclear Installations
Science and Technology of Nuclear Installations NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.
期刊最新文献
Assessment of Radiation Dose Associated with the Atmospheric Release of 41Ar from the TRIGA Mark-II Research Reactor in Bangladesh Design Change and Operational Consideration of the HVAC System during Nuclear Power Plant Decommissioning Accuracy Evaluation of Monte Carlo Simulation Results Using ENDF/B-VIII.0 and JENDL-5 Libraries for 10 MWth Micro Heat Pipe-Cooled Reactor Effect of Photomultiplier Tube Voltage on the Performance of Sealed NaI (Tl) Scintillator Detectors An Association Rule Mining-Based Method for Revealing the Impact of Operational Sequence on Nuclear Power Plants Operating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1