生物纳米材料——纳米技术的一个新兴领域

A.R. Shelin, S. Meenakshi
{"title":"生物纳米材料——纳米技术的一个新兴领域","authors":"A.R. Shelin, S. Meenakshi","doi":"10.5604/01.3001.0053.7498","DOIUrl":null,"url":null,"abstract":"The science that involves nano-sized particles have been shown to have a huge impact on a variety of research fields, such as electronics, medicine, engineering, robotics and technology. The involvement of biological agents in nanoscience helped in the origin of bionanotechnology, which is deeply rooted in therapeutic and medical applications. This review provides an initiative to understand the combination of biological molecules and nanoparticles in delivering a great impression in the world of therapeutics.Conjugation of nanoparticles with the biological molecules makes them more friendly for the living system by increasing biocompatibility and reducing toxicity.Growing research in this area has revealed the identification and characterization of numerous biological agents of nano-sized that can serve as better carrier systems. They are exploited in the development of advanced nanoparticle-based targeted drug delivery systems. In general, either the combined form or the one in the derived form of nanoparticles from different biological organisms provides a valuable understanding of their specifications and importance in different therapeutic aspects.The combined form of biological molecules and nanoparticles is not yet well understood, and this might provide a baseline for prospects.This review provides an understanding of biologically synthesized and conjugated nanoparticles and their potential as therapeutic norms and highlights their applications, especially in the clinical field.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionanomaterials an emerging field of nanotechnology\",\"authors\":\"A.R. Shelin, S. Meenakshi\",\"doi\":\"10.5604/01.3001.0053.7498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The science that involves nano-sized particles have been shown to have a huge impact on a variety of research fields, such as electronics, medicine, engineering, robotics and technology. The involvement of biological agents in nanoscience helped in the origin of bionanotechnology, which is deeply rooted in therapeutic and medical applications. This review provides an initiative to understand the combination of biological molecules and nanoparticles in delivering a great impression in the world of therapeutics.Conjugation of nanoparticles with the biological molecules makes them more friendly for the living system by increasing biocompatibility and reducing toxicity.Growing research in this area has revealed the identification and characterization of numerous biological agents of nano-sized that can serve as better carrier systems. They are exploited in the development of advanced nanoparticle-based targeted drug delivery systems. In general, either the combined form or the one in the derived form of nanoparticles from different biological organisms provides a valuable understanding of their specifications and importance in different therapeutic aspects.The combined form of biological molecules and nanoparticles is not yet well understood, and this might provide a baseline for prospects.This review provides an understanding of biologically synthesized and conjugated nanoparticles and their potential as therapeutic norms and highlights their applications, especially in the clinical field.\",\"PeriodicalId\":8297,\"journal\":{\"name\":\"Archives of materials science and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of materials science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0053.7498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.7498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

涉及纳米颗粒的科学已被证明对电子、医学、工程、机器人和技术等多个研究领域产生了巨大影响。生物制剂在纳米科学中的参与有助于生物纳米技术的起源,该技术深深植根于治疗和医学应用。这篇综述为理解生物分子和纳米颗粒的结合在治疗学领域给人留下深刻印象提供了一项举措。纳米颗粒与生物分子的结合通过提高生物相容性和降低毒性,使其对生物系统更友好。该领域日益增长的研究揭示了许多纳米生物制剂的鉴定和表征,这些生物制剂可以作为更好的载体系统。它们被用于开发先进的基于纳米颗粒的靶向药物递送系统。通常,来自不同生物有机体的纳米颗粒的组合形式或衍生形式提供了对其在不同治疗方面的规格和重要性的有价值的理解。生物分子和纳米颗粒的组合形式尚不清楚,这可能为前景提供了基线。这篇综述提供了对生物合成和偶联的纳米颗粒及其作为治疗规范的潜力的理解,并强调了它们的应用,特别是在临床领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bionanomaterials an emerging field of nanotechnology
The science that involves nano-sized particles have been shown to have a huge impact on a variety of research fields, such as electronics, medicine, engineering, robotics and technology. The involvement of biological agents in nanoscience helped in the origin of bionanotechnology, which is deeply rooted in therapeutic and medical applications. This review provides an initiative to understand the combination of biological molecules and nanoparticles in delivering a great impression in the world of therapeutics.Conjugation of nanoparticles with the biological molecules makes them more friendly for the living system by increasing biocompatibility and reducing toxicity.Growing research in this area has revealed the identification and characterization of numerous biological agents of nano-sized that can serve as better carrier systems. They are exploited in the development of advanced nanoparticle-based targeted drug delivery systems. In general, either the combined form or the one in the derived form of nanoparticles from different biological organisms provides a valuable understanding of their specifications and importance in different therapeutic aspects.The combined form of biological molecules and nanoparticles is not yet well understood, and this might provide a baseline for prospects.This review provides an understanding of biologically synthesized and conjugated nanoparticles and their potential as therapeutic norms and highlights their applications, especially in the clinical field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of materials science and engineering
Archives of materials science and engineering Materials Science-Materials Science (all)
CiteScore
2.90
自引率
0.00%
发文量
15
期刊最新文献
Heat transfer improvement using additive manufacturing technologies: a review Influence of manganese content on the microstructure and properties of AlSi10MnMg(Fe) alloy for die castings An experimental and theoretical piezoelectric energy harvesting from a simply supported beam with moving mass Details Matter in Structure-based Drug Design. Investigation of the effect of polymer concentration in fracturing fluid on crack size and permeability during hydraulic fracturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1