Robyn N. Holmes, A. Mayer, D. Gutzler, Luis Garnica Chavira
{"title":"使用简单的水平衡水库模型评估气候变化对中里奥格兰德州地表水供应的影响","authors":"Robyn N. Holmes, A. Mayer, D. Gutzler, Luis Garnica Chavira","doi":"10.1175/ei-d-21-0025.1","DOIUrl":null,"url":null,"abstract":"\nThe Middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte-Caballo reservoir system (Southern New Mexico, USA). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 Global Climate Models, coupled to a surface hydrologic model. Results suggest the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021-2070) will decrease compared to the past 50 years (1971-2020). The modeling also projects an increase in multi-year drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs, compared to changes in local evaporation and precipitation from the reservoir surfaces.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Assessing the Effects of Climate Change on Middle Rio Grande Surface Water Supplies Using a Simple Water Balance Reservoir Model\",\"authors\":\"Robyn N. Holmes, A. Mayer, D. Gutzler, Luis Garnica Chavira\",\"doi\":\"10.1175/ei-d-21-0025.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe Middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte-Caballo reservoir system (Southern New Mexico, USA). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 Global Climate Models, coupled to a surface hydrologic model. Results suggest the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021-2070) will decrease compared to the past 50 years (1971-2020). The modeling also projects an increase in multi-year drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs, compared to changes in local evaporation and precipitation from the reservoir surfaces.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/ei-d-21-0025.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/ei-d-21-0025.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessing the Effects of Climate Change on Middle Rio Grande Surface Water Supplies Using a Simple Water Balance Reservoir Model
The Middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte-Caballo reservoir system (Southern New Mexico, USA). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 Global Climate Models, coupled to a surface hydrologic model. Results suggest the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021-2070) will decrease compared to the past 50 years (1971-2020). The modeling also projects an increase in multi-year drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs, compared to changes in local evaporation and precipitation from the reservoir surfaces.
期刊介绍:
Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.