两株植物有益链霉菌的培养和产孢优化

Q4 Agricultural and Biological Sciences Research in Plant Disease Pub Date : 2023-06-30 DOI:10.5423/rpd.2023.29.2.174
Da-Ran Kim, Youn-Sig Kwak
{"title":"两株植物有益链霉菌的培养和产孢优化","authors":"Da-Ran Kim, Youn-Sig Kwak","doi":"10.5423/rpd.2023.29.2.174","DOIUrl":null,"url":null,"abstract":"The limited effectiveness of current plant disease management treatments necessitates the development of new methods for controlling diseases using beneficial microbes. Demanding sustainable agriculture is increasingly highlighted as a biocontrol approach, particularly Streptomyces species known to produce a variety of antibiotic compounds and secondary metabolites. The Streptomyces globisporus SP6C4 strain and Streptomyces sp. S8 have been reported as potent antifungal agents and are gaining attention for improving crop growth in sustainable agriculture. In this study, we investigated the use of Streptomyces species formulations to enhance bacterial growth with nitrogen sources. Specifically, the addition of L-glutamic acid and L-cysteine resulted in earlier sporulation and bacterial growth in Streptomyces strains, respectively. This approach could expand the range of fermentation techniques in agriculture and be useful for controlling plant growth-promoting bacteria.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Culture and Sporulation for Two Plant Beneficial Streptomyces Strains\",\"authors\":\"Da-Ran Kim, Youn-Sig Kwak\",\"doi\":\"10.5423/rpd.2023.29.2.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limited effectiveness of current plant disease management treatments necessitates the development of new methods for controlling diseases using beneficial microbes. Demanding sustainable agriculture is increasingly highlighted as a biocontrol approach, particularly Streptomyces species known to produce a variety of antibiotic compounds and secondary metabolites. The Streptomyces globisporus SP6C4 strain and Streptomyces sp. S8 have been reported as potent antifungal agents and are gaining attention for improving crop growth in sustainable agriculture. In this study, we investigated the use of Streptomyces species formulations to enhance bacterial growth with nitrogen sources. Specifically, the addition of L-glutamic acid and L-cysteine resulted in earlier sporulation and bacterial growth in Streptomyces strains, respectively. This approach could expand the range of fermentation techniques in agriculture and be useful for controlling plant growth-promoting bacteria.\",\"PeriodicalId\":36349,\"journal\":{\"name\":\"Research in Plant Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Plant Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5423/rpd.2023.29.2.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Plant Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5423/rpd.2023.29.2.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

目前植物病害管理治疗的有效性有限,需要开发利用有益微生物控制病害的新方法。要求可持续的农业作为一种生物防治方法越来越受到重视,特别是已知能产生多种抗生素化合物和次生代谢物的链霉菌。据报道,全球孢链霉菌SP6C4和链霉菌S8是有效的抗真菌剂,在促进可持续农业作物生长方面受到越来越多的关注。在本研究中,我们研究了利用链霉菌种类配方来促进氮源细菌的生长。具体来说,添加l -谷氨酸和l -半胱氨酸分别使链霉菌的产孢和细菌生长提前。这种方法可以扩大农业发酵技术的范围,并有助于控制植物生长促进菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Culture and Sporulation for Two Plant Beneficial Streptomyces Strains
The limited effectiveness of current plant disease management treatments necessitates the development of new methods for controlling diseases using beneficial microbes. Demanding sustainable agriculture is increasingly highlighted as a biocontrol approach, particularly Streptomyces species known to produce a variety of antibiotic compounds and secondary metabolites. The Streptomyces globisporus SP6C4 strain and Streptomyces sp. S8 have been reported as potent antifungal agents and are gaining attention for improving crop growth in sustainable agriculture. In this study, we investigated the use of Streptomyces species formulations to enhance bacterial growth with nitrogen sources. Specifically, the addition of L-glutamic acid and L-cysteine resulted in earlier sporulation and bacterial growth in Streptomyces strains, respectively. This approach could expand the range of fermentation techniques in agriculture and be useful for controlling plant growth-promoting bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Plant Disease
Research in Plant Disease Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.20
自引率
0.00%
发文量
23
审稿时长
18 weeks
期刊最新文献
Potato Soft Rot Caused by Psychrotolerant Pseudomonas sp. from Subarctic Tundra Soil First Report of Bacterial Spot Disease Caused by Pseudomonas capsici on Castor Bean in Korea Identification and Pathogenicity of Rhizoctonia solani Isolates Causing Leaf and Stem Rot in Three-Leaf Ladybell Effect of Milling on Reduction of Fusarium Mycotoxins in Barley Disease Resistance-Based Management of Alternaria Black Spot in Cruciferous Crops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1