{"title":"基于PCA–GA–BP神经网络的转炉终点P和O含量预测模型","authors":"Zhao Liu, S. Cheng, P. Liu","doi":"10.1515/htmp-2022-0050","DOIUrl":null,"url":null,"abstract":"Abstract Low-carbon, green and intelligent production is urgently needed in China’s iron and steel industry. Accurate prediction of liquid steel composition at the end of basic oxygen furnace (BOF) plays an important role in promoting high-quality, high-efficiency and stable production in steelmaking process. A prediction model based on the principal component analysis (PCA) – genetic algorithm (GA) – back propagation (BP) neural network is proposed for BOF end-point P and O contents of liquid steel. PCA is used to eliminate the correlation between the factors, and the obtained principal components are seen as input parameters of the BP neural network; then, GA is employed to optimize the initialized weights and thresholds of the BP neural network. The flux composition and bottom blowing are considered in the input variables. The results indicate that the prediction accuracy of the single output model is higher than that of the dual output model. The root-mean-square error of P content between predicted and actual values is 0.0015%, and that of O content is 0.0049%. Therefore, the model can provide a good reference for BOF end-point control.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":"41 1","pages":"505 - 513"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Prediction model of BOF end-point P and O contents based on PCA–GA–BP neural network\",\"authors\":\"Zhao Liu, S. Cheng, P. Liu\",\"doi\":\"10.1515/htmp-2022-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Low-carbon, green and intelligent production is urgently needed in China’s iron and steel industry. Accurate prediction of liquid steel composition at the end of basic oxygen furnace (BOF) plays an important role in promoting high-quality, high-efficiency and stable production in steelmaking process. A prediction model based on the principal component analysis (PCA) – genetic algorithm (GA) – back propagation (BP) neural network is proposed for BOF end-point P and O contents of liquid steel. PCA is used to eliminate the correlation between the factors, and the obtained principal components are seen as input parameters of the BP neural network; then, GA is employed to optimize the initialized weights and thresholds of the BP neural network. The flux composition and bottom blowing are considered in the input variables. The results indicate that the prediction accuracy of the single output model is higher than that of the dual output model. The root-mean-square error of P content between predicted and actual values is 0.0015%, and that of O content is 0.0049%. Therefore, the model can provide a good reference for BOF end-point control.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\"41 1\",\"pages\":\"505 - 513\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0050\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction model of BOF end-point P and O contents based on PCA–GA–BP neural network
Abstract Low-carbon, green and intelligent production is urgently needed in China’s iron and steel industry. Accurate prediction of liquid steel composition at the end of basic oxygen furnace (BOF) plays an important role in promoting high-quality, high-efficiency and stable production in steelmaking process. A prediction model based on the principal component analysis (PCA) – genetic algorithm (GA) – back propagation (BP) neural network is proposed for BOF end-point P and O contents of liquid steel. PCA is used to eliminate the correlation between the factors, and the obtained principal components are seen as input parameters of the BP neural network; then, GA is employed to optimize the initialized weights and thresholds of the BP neural network. The flux composition and bottom blowing are considered in the input variables. The results indicate that the prediction accuracy of the single output model is higher than that of the dual output model. The root-mean-square error of P content between predicted and actual values is 0.0015%, and that of O content is 0.0049%. Therefore, the model can provide a good reference for BOF end-point control.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.