G. Smyrnakis, G. Stamoulis, D. Palaiogiannis, Theodoros G. Chatzimitakos, V. Athanasiadis, S. Lalas, D. Makris
{"title":"酸催化乙醇有机溶剂法从咖啡银皮中回收多酚类抗氧化剂","authors":"G. Smyrnakis, G. Stamoulis, D. Palaiogiannis, Theodoros G. Chatzimitakos, V. Athanasiadis, S. Lalas, D. Makris","doi":"10.3390/chemengineering7040072","DOIUrl":null,"url":null,"abstract":"The examination presented herein sought to establish a novel methodology for the efficient recovery of polyphenolic antioxidants from coffee processing residues, namely coffee silverskin (CSS). The process developed was an ethanol-based organosolv treatment, assisted by acid catalysis, using sulfuric acid or oxalic acid as the catalyst. The first approach was modeling treatment based on severity, where it was found that treatment dependence on time and temperature may well be described by linear relationships. Response surface methodology was then deployed as a consecutive stage, to optimize treatments with regard to catalyst concentration and resident time. In this case, again, linear models could effectively predict polyphenol recovery yield (YTP). For the sulfuric-acid-catalyzed treatment, the maximum theoretic YTP was found to be 10.95 ± 0.44 mg caffeic acid equivalent (CAE) g−1 DM, achieved at CSuAc = 1.5% and t = 300 min. On the other hand, the maximum YTP of 10.30 ± 0.53 could be attained at COxAc = 4%, and t = 300 min. Considering treatment severity, it was concluded that the use of oxalic acid, a food-grade organic acid, instead of sulfuric acid, a corrosive acid, would afford equivalent effects at lower severity. The high-performance liquid chromatography analyses also revealed that the extract produced through the oxalic-acid-catalyzed treatment was more enriched in neochlorogenic and chlorogenic acids, and it exhibited stronger antiradical activity, but weaker ferric-reducing effects. It is proposed that the methodology developed may contribute towards the use of coffee processing wastes as potential sources of bioactive ingredients and the design of novel functional products, in the frame of a more sustainable strategy for coffee processing companies.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recovery of Polyphenolic Antioxidants from Coffee Silverskin Using Acid-Catalyzed Ethanol Organosolv Treatment\",\"authors\":\"G. Smyrnakis, G. Stamoulis, D. Palaiogiannis, Theodoros G. Chatzimitakos, V. Athanasiadis, S. Lalas, D. Makris\",\"doi\":\"10.3390/chemengineering7040072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The examination presented herein sought to establish a novel methodology for the efficient recovery of polyphenolic antioxidants from coffee processing residues, namely coffee silverskin (CSS). The process developed was an ethanol-based organosolv treatment, assisted by acid catalysis, using sulfuric acid or oxalic acid as the catalyst. The first approach was modeling treatment based on severity, where it was found that treatment dependence on time and temperature may well be described by linear relationships. Response surface methodology was then deployed as a consecutive stage, to optimize treatments with regard to catalyst concentration and resident time. In this case, again, linear models could effectively predict polyphenol recovery yield (YTP). For the sulfuric-acid-catalyzed treatment, the maximum theoretic YTP was found to be 10.95 ± 0.44 mg caffeic acid equivalent (CAE) g−1 DM, achieved at CSuAc = 1.5% and t = 300 min. On the other hand, the maximum YTP of 10.30 ± 0.53 could be attained at COxAc = 4%, and t = 300 min. Considering treatment severity, it was concluded that the use of oxalic acid, a food-grade organic acid, instead of sulfuric acid, a corrosive acid, would afford equivalent effects at lower severity. The high-performance liquid chromatography analyses also revealed that the extract produced through the oxalic-acid-catalyzed treatment was more enriched in neochlorogenic and chlorogenic acids, and it exhibited stronger antiradical activity, but weaker ferric-reducing effects. It is proposed that the methodology developed may contribute towards the use of coffee processing wastes as potential sources of bioactive ingredients and the design of novel functional products, in the frame of a more sustainable strategy for coffee processing companies.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7040072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7040072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Recovery of Polyphenolic Antioxidants from Coffee Silverskin Using Acid-Catalyzed Ethanol Organosolv Treatment
The examination presented herein sought to establish a novel methodology for the efficient recovery of polyphenolic antioxidants from coffee processing residues, namely coffee silverskin (CSS). The process developed was an ethanol-based organosolv treatment, assisted by acid catalysis, using sulfuric acid or oxalic acid as the catalyst. The first approach was modeling treatment based on severity, where it was found that treatment dependence on time and temperature may well be described by linear relationships. Response surface methodology was then deployed as a consecutive stage, to optimize treatments with regard to catalyst concentration and resident time. In this case, again, linear models could effectively predict polyphenol recovery yield (YTP). For the sulfuric-acid-catalyzed treatment, the maximum theoretic YTP was found to be 10.95 ± 0.44 mg caffeic acid equivalent (CAE) g−1 DM, achieved at CSuAc = 1.5% and t = 300 min. On the other hand, the maximum YTP of 10.30 ± 0.53 could be attained at COxAc = 4%, and t = 300 min. Considering treatment severity, it was concluded that the use of oxalic acid, a food-grade organic acid, instead of sulfuric acid, a corrosive acid, would afford equivalent effects at lower severity. The high-performance liquid chromatography analyses also revealed that the extract produced through the oxalic-acid-catalyzed treatment was more enriched in neochlorogenic and chlorogenic acids, and it exhibited stronger antiradical activity, but weaker ferric-reducing effects. It is proposed that the methodology developed may contribute towards the use of coffee processing wastes as potential sources of bioactive ingredients and the design of novel functional products, in the frame of a more sustainable strategy for coffee processing companies.