{"title":"基于分层块变长编码的云安全可逆数据隐藏","authors":"Shuying Xu, Ji-Hwei Horng, Ching-Chun Chang, Chin-chen Chang","doi":"10.1109/TDSC.2022.3219843","DOIUrl":null,"url":null,"abstract":"Reversible data hiding in encrypted images (RDHEI) can serve as a technical solution to secure data in applications that rely on cloud storage. The key features of an RDHEI scheme are reversibility, security, and data embedding rate. To enlarge the embedding rate, this paper proposes a novel RDHEI scheme based on the median edge detector (MED) and a new proposed hierarchical block variable length coding (HBVLC) technique. In our scheme, the image owner first predicts the pixel values of the carrier image with MED. Then, the prediction error array is sliced into bit-planes and encoded plane by plane. By leveraging the inherent features of the prediction error bit-planes, the image owner adaptively decomposes a bit-plane into blocks of different hierarchical levels based on its local smoothness and encodes the blocks with a variable length coding method. As a result, the carrier image is efficiently compressed to provide spare room for data embedding. The encoded carrier image is then processed with the conventional steps of an RDHEI technique. Experimental results show that the proposed scheme not only can restore the secret data and the carrier image without loss but also outperforms state-of-the-art methods in the embedding rate for images with various features.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4199-4213"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reversible Data Hiding With Hierarchical Block Variable Length Coding for Cloud Security\",\"authors\":\"Shuying Xu, Ji-Hwei Horng, Ching-Chun Chang, Chin-chen Chang\",\"doi\":\"10.1109/TDSC.2022.3219843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible data hiding in encrypted images (RDHEI) can serve as a technical solution to secure data in applications that rely on cloud storage. The key features of an RDHEI scheme are reversibility, security, and data embedding rate. To enlarge the embedding rate, this paper proposes a novel RDHEI scheme based on the median edge detector (MED) and a new proposed hierarchical block variable length coding (HBVLC) technique. In our scheme, the image owner first predicts the pixel values of the carrier image with MED. Then, the prediction error array is sliced into bit-planes and encoded plane by plane. By leveraging the inherent features of the prediction error bit-planes, the image owner adaptively decomposes a bit-plane into blocks of different hierarchical levels based on its local smoothness and encodes the blocks with a variable length coding method. As a result, the carrier image is efficiently compressed to provide spare room for data embedding. The encoded carrier image is then processed with the conventional steps of an RDHEI technique. Experimental results show that the proposed scheme not only can restore the secret data and the carrier image without loss but also outperforms state-of-the-art methods in the embedding rate for images with various features.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"4199-4213\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3219843\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3219843","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Reversible Data Hiding With Hierarchical Block Variable Length Coding for Cloud Security
Reversible data hiding in encrypted images (RDHEI) can serve as a technical solution to secure data in applications that rely on cloud storage. The key features of an RDHEI scheme are reversibility, security, and data embedding rate. To enlarge the embedding rate, this paper proposes a novel RDHEI scheme based on the median edge detector (MED) and a new proposed hierarchical block variable length coding (HBVLC) technique. In our scheme, the image owner first predicts the pixel values of the carrier image with MED. Then, the prediction error array is sliced into bit-planes and encoded plane by plane. By leveraging the inherent features of the prediction error bit-planes, the image owner adaptively decomposes a bit-plane into blocks of different hierarchical levels based on its local smoothness and encodes the blocks with a variable length coding method. As a result, the carrier image is efficiently compressed to provide spare room for data embedding. The encoded carrier image is then processed with the conventional steps of an RDHEI technique. Experimental results show that the proposed scheme not only can restore the secret data and the carrier image without loss but also outperforms state-of-the-art methods in the embedding rate for images with various features.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.