Guowu Zhang, Wen Wang, Yukai Jin, Shi Jin, Lei Mi, Xiaowen Song, He Li, J. Liao
{"title":"三氧化二砷通过调节早幼粒细胞白血病蛋白水平对肝癌细胞的抑制作用","authors":"Guowu Zhang, Wen Wang, Yukai Jin, Shi Jin, Lei Mi, Xiaowen Song, He Li, J. Liao","doi":"10.14393/bj-v39n0a2023-63086","DOIUrl":null,"url":null,"abstract":"Previous Chinese research revealed that diarsenic trioxide (As2O3) inhibits acute promyelocytic leukemia (PML) cell proliferation and initiates apoptosis through degradation of the PML-retinoic acid receptor protein. This study was to analyse whether As2O3 also had an effect on hepatocellular carcinoma (HCC) cells. As2O3 effects on various HCC cell lines and primary HCC cells were investigated in time and dose series, including measurements of cell growth, PML mRNA and protein expression, xenografted tumor formation, and the self-renewal Oct4 and hepatocyte marker expressions in mouse model xenografts or cells treated with PML siRNA. The results were analyzed by immunocytochemistry, quantitative reverse transcription PCR and western blotting as well as indocyanine green and Periodic Acid Schiff staining. As2O3 inhibited HCC cell and HCC cell-derived xenograft tumor formation in a time-dependent manner and reduced PML protein expression in HCC cells, but had limited effects on PML mRNA levels in cell nuclei. The HCC cell line HuH7 treated with As2O3 showed a decreased expression of alpha-fetoprotein and increased expression and transcription of mature hepatocyte markers, indicating differentiation of HCC cells into hepatocytes. Cytokeratin 18 protein and mRNA levels as well as tyrosine aminotransferase and apolipoprotein B mRNA transcriptions were enhanced by As2O3 as were the numbers of indocyanine green and Periodic Acid Schiff stained cells. In addition, As2O3 downregulated the expression of Oct4. In conclusion, since As2O3 inhibited HCC cell proliferation and HCC cell-derived xenograft tumor formation it is suggested that an appropriate concentration of As2O3 might be a promising therapy to treat HCC.","PeriodicalId":8951,"journal":{"name":"Bioscience Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory effects of diarsenic trioxide (As2O3) on hepatocellular carcinoma cells exerted by regulation of promyelocytic leukemia protein levels\",\"authors\":\"Guowu Zhang, Wen Wang, Yukai Jin, Shi Jin, Lei Mi, Xiaowen Song, He Li, J. Liao\",\"doi\":\"10.14393/bj-v39n0a2023-63086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous Chinese research revealed that diarsenic trioxide (As2O3) inhibits acute promyelocytic leukemia (PML) cell proliferation and initiates apoptosis through degradation of the PML-retinoic acid receptor protein. This study was to analyse whether As2O3 also had an effect on hepatocellular carcinoma (HCC) cells. As2O3 effects on various HCC cell lines and primary HCC cells were investigated in time and dose series, including measurements of cell growth, PML mRNA and protein expression, xenografted tumor formation, and the self-renewal Oct4 and hepatocyte marker expressions in mouse model xenografts or cells treated with PML siRNA. The results were analyzed by immunocytochemistry, quantitative reverse transcription PCR and western blotting as well as indocyanine green and Periodic Acid Schiff staining. As2O3 inhibited HCC cell and HCC cell-derived xenograft tumor formation in a time-dependent manner and reduced PML protein expression in HCC cells, but had limited effects on PML mRNA levels in cell nuclei. The HCC cell line HuH7 treated with As2O3 showed a decreased expression of alpha-fetoprotein and increased expression and transcription of mature hepatocyte markers, indicating differentiation of HCC cells into hepatocytes. Cytokeratin 18 protein and mRNA levels as well as tyrosine aminotransferase and apolipoprotein B mRNA transcriptions were enhanced by As2O3 as were the numbers of indocyanine green and Periodic Acid Schiff stained cells. In addition, As2O3 downregulated the expression of Oct4. In conclusion, since As2O3 inhibited HCC cell proliferation and HCC cell-derived xenograft tumor formation it is suggested that an appropriate concentration of As2O3 might be a promising therapy to treat HCC.\",\"PeriodicalId\":8951,\"journal\":{\"name\":\"Bioscience Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14393/bj-v39n0a2023-63086\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14393/bj-v39n0a2023-63086","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Inhibitory effects of diarsenic trioxide (As2O3) on hepatocellular carcinoma cells exerted by regulation of promyelocytic leukemia protein levels
Previous Chinese research revealed that diarsenic trioxide (As2O3) inhibits acute promyelocytic leukemia (PML) cell proliferation and initiates apoptosis through degradation of the PML-retinoic acid receptor protein. This study was to analyse whether As2O3 also had an effect on hepatocellular carcinoma (HCC) cells. As2O3 effects on various HCC cell lines and primary HCC cells were investigated in time and dose series, including measurements of cell growth, PML mRNA and protein expression, xenografted tumor formation, and the self-renewal Oct4 and hepatocyte marker expressions in mouse model xenografts or cells treated with PML siRNA. The results were analyzed by immunocytochemistry, quantitative reverse transcription PCR and western blotting as well as indocyanine green and Periodic Acid Schiff staining. As2O3 inhibited HCC cell and HCC cell-derived xenograft tumor formation in a time-dependent manner and reduced PML protein expression in HCC cells, but had limited effects on PML mRNA levels in cell nuclei. The HCC cell line HuH7 treated with As2O3 showed a decreased expression of alpha-fetoprotein and increased expression and transcription of mature hepatocyte markers, indicating differentiation of HCC cells into hepatocytes. Cytokeratin 18 protein and mRNA levels as well as tyrosine aminotransferase and apolipoprotein B mRNA transcriptions were enhanced by As2O3 as were the numbers of indocyanine green and Periodic Acid Schiff stained cells. In addition, As2O3 downregulated the expression of Oct4. In conclusion, since As2O3 inhibited HCC cell proliferation and HCC cell-derived xenograft tumor formation it is suggested that an appropriate concentration of As2O3 might be a promising therapy to treat HCC.
Bioscience JournalAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
1.00
自引率
0.00%
发文量
90
审稿时长
48 weeks
期刊介绍:
The Bioscience Journal is an interdisciplinary electronic journal that publishes scientific articles in the areas of Agricultural Sciences, Biological Sciences and Health Sciences. Its mission is to disseminate new knowledge while contributing to the development of science in the country and in the world. The journal is published in a continuous flow, in English. The opinions and concepts expressed in the published articles are the sole responsibility of their authors.