{"title":"用于协助内陆水域监测的异构无人水面飞行器的全球路径规划和航路点跟踪","authors":"Liang Zhao , Yong Bai , Jeom Kee Paik","doi":"10.1016/j.joes.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>The idea of dispatching multiple unmanned surface vehicles (USVs) to undertake marine missions has ignited a burgeoning enthusiasm on a global scale. Embarking on a quest to facilitate inland water monitoring, this paper presents a systematical approach concerning global path planning and path following for heterogeneous USVs. Specifically, by capturing the heterogeneous nature, an extended multiple travelling salesman problem (EMTSP) model, which seamlessly bridges the gap between various disparate constraints and optimization objectives, is formulated for the first time. Then, a novel Greedy Partheno Genetic Algorithm (GPGA) is devised to consistently address the problem from two aspects: (1) Incorporating the greedy randomized initialization and local exploration strategy, GPGA merits strong global and local searching ability, providing high-quality solutions for EMTSP. (2) A novel mutation strategy which not only inherits all advantages of PGA but also maintains the best individual in the offspring is devised, contributing to the local escaping efficiently. Finally, to track the waypoint permutations generated by GPGA, control input is generated by the nonlinear model predictive controller (NMPC), ensuring the USV corresponds with the reference path and smoothen the motion under constrained dynamics. Simulations and comparisons in various scenarios demonstrated the effectiveness and superiority of the proposed scheme.</div></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"10 1","pages":"Pages 88-108"},"PeriodicalIF":13.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global path planning and waypoint following for heterogeneous unmanned surface vehicles assisting inland water monitoring\",\"authors\":\"Liang Zhao , Yong Bai , Jeom Kee Paik\",\"doi\":\"10.1016/j.joes.2023.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The idea of dispatching multiple unmanned surface vehicles (USVs) to undertake marine missions has ignited a burgeoning enthusiasm on a global scale. Embarking on a quest to facilitate inland water monitoring, this paper presents a systematical approach concerning global path planning and path following for heterogeneous USVs. Specifically, by capturing the heterogeneous nature, an extended multiple travelling salesman problem (EMTSP) model, which seamlessly bridges the gap between various disparate constraints and optimization objectives, is formulated for the first time. Then, a novel Greedy Partheno Genetic Algorithm (GPGA) is devised to consistently address the problem from two aspects: (1) Incorporating the greedy randomized initialization and local exploration strategy, GPGA merits strong global and local searching ability, providing high-quality solutions for EMTSP. (2) A novel mutation strategy which not only inherits all advantages of PGA but also maintains the best individual in the offspring is devised, contributing to the local escaping efficiently. Finally, to track the waypoint permutations generated by GPGA, control input is generated by the nonlinear model predictive controller (NMPC), ensuring the USV corresponds with the reference path and smoothen the motion under constrained dynamics. Simulations and comparisons in various scenarios demonstrated the effectiveness and superiority of the proposed scheme.</div></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":\"10 1\",\"pages\":\"Pages 88-108\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013323000359\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013323000359","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Global path planning and waypoint following for heterogeneous unmanned surface vehicles assisting inland water monitoring
The idea of dispatching multiple unmanned surface vehicles (USVs) to undertake marine missions has ignited a burgeoning enthusiasm on a global scale. Embarking on a quest to facilitate inland water monitoring, this paper presents a systematical approach concerning global path planning and path following for heterogeneous USVs. Specifically, by capturing the heterogeneous nature, an extended multiple travelling salesman problem (EMTSP) model, which seamlessly bridges the gap between various disparate constraints and optimization objectives, is formulated for the first time. Then, a novel Greedy Partheno Genetic Algorithm (GPGA) is devised to consistently address the problem from two aspects: (1) Incorporating the greedy randomized initialization and local exploration strategy, GPGA merits strong global and local searching ability, providing high-quality solutions for EMTSP. (2) A novel mutation strategy which not only inherits all advantages of PGA but also maintains the best individual in the offspring is devised, contributing to the local escaping efficiently. Finally, to track the waypoint permutations generated by GPGA, control input is generated by the nonlinear model predictive controller (NMPC), ensuring the USV corresponds with the reference path and smoothen the motion under constrained dynamics. Simulations and comparisons in various scenarios demonstrated the effectiveness and superiority of the proposed scheme.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.