揭开欧米茄平方的神秘面纱:方差设计中常见分析效应大小的实用指南。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2023-07-10 DOI:10.1037/met0000581.supp
Antoinette D A Kroes, Jason R. Finley
{"title":"揭开欧米茄平方的神秘面纱:方差设计中常见分析效应大小的实用指南。","authors":"Antoinette D A Kroes, Jason R. Finley","doi":"10.1037/met0000581.supp","DOIUrl":null,"url":null,"abstract":"Omega squared (ω^2) is a measure of effect size for analysis of variance (ANOVA) designs. It is less biased than eta squared, but reported less often. This is in part due to lack of clear guidance on how to calculate it. In this paper, we discuss the logic behind effect size measures, the problem with eta squared, the history of omega squared, and why it has been underused. We then provide a user-friendly guide to omega squared and partial omega squared for ANOVA designs with fixed factors, including one-way, two-way, and three-way designs, using within-subjects factors and/or between-subjects factors. We show how to calculate omega squared using output from SPSS. We provide information on the calculation of confidence intervals. We examine the problems of nonadditivity, and intrinsic versus extrinsic factors. We argue that statistical package developers could play an important role in making the calculation of omega squared easier. Finally, we recommend that researchers report the formulas used in calculating effect sizes, include confidence intervals if possible, and include ANOVA tables in the online supplemental materials of their work. (PsycInfo Database Record (c) 2023 APA, all rights reserved).","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Demystifying omega squared: Practical guidance for effect size in common analysis of variance designs.\",\"authors\":\"Antoinette D A Kroes, Jason R. Finley\",\"doi\":\"10.1037/met0000581.supp\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Omega squared (ω^2) is a measure of effect size for analysis of variance (ANOVA) designs. It is less biased than eta squared, but reported less often. This is in part due to lack of clear guidance on how to calculate it. In this paper, we discuss the logic behind effect size measures, the problem with eta squared, the history of omega squared, and why it has been underused. We then provide a user-friendly guide to omega squared and partial omega squared for ANOVA designs with fixed factors, including one-way, two-way, and three-way designs, using within-subjects factors and/or between-subjects factors. We show how to calculate omega squared using output from SPSS. We provide information on the calculation of confidence intervals. We examine the problems of nonadditivity, and intrinsic versus extrinsic factors. We argue that statistical package developers could play an important role in making the calculation of omega squared easier. Finally, we recommend that researchers report the formulas used in calculating effect sizes, include confidence intervals if possible, and include ANOVA tables in the online supplemental materials of their work. (PsycInfo Database Record (c) 2023 APA, all rights reserved).\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000581.supp\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000581.supp","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

Omega平方(ω^2)是方差分析(ANOVA)设计的效应大小的度量。它的偏差小于eta平方,但报告的频率较低。这在一定程度上是由于缺乏关于如何计算它的明确指导。在本文中,我们讨论了效应大小度量背后的逻辑、eta平方的问题、omega平方的历史,以及为什么它没有得到充分利用。然后,我们使用受试者内部因素和/或受试者之间因素,为具有固定因素的方差分析设计(包括单向、双向和三向设计)提供了一个关于ω平方和偏ω平方的用户友好指南。我们展示了如何使用SPSS的输出计算ω平方。我们提供有关置信区间计算的信息。我们研究了非相加性问题,以及内在因素与外在因素的关系。我们认为,统计包开发人员可以在简化ω平方的计算方面发挥重要作用。最后,我们建议研究人员报告用于计算效应大小的公式,如果可能的话,包括置信区间,并在他们工作的在线补充材料中包括方差分析表。(PsycInfo数据库记录(c)2023 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demystifying omega squared: Practical guidance for effect size in common analysis of variance designs.
Omega squared (ω^2) is a measure of effect size for analysis of variance (ANOVA) designs. It is less biased than eta squared, but reported less often. This is in part due to lack of clear guidance on how to calculate it. In this paper, we discuss the logic behind effect size measures, the problem with eta squared, the history of omega squared, and why it has been underused. We then provide a user-friendly guide to omega squared and partial omega squared for ANOVA designs with fixed factors, including one-way, two-way, and three-way designs, using within-subjects factors and/or between-subjects factors. We show how to calculate omega squared using output from SPSS. We provide information on the calculation of confidence intervals. We examine the problems of nonadditivity, and intrinsic versus extrinsic factors. We argue that statistical package developers could play an important role in making the calculation of omega squared easier. Finally, we recommend that researchers report the formulas used in calculating effect sizes, include confidence intervals if possible, and include ANOVA tables in the online supplemental materials of their work. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. Item response theory-based continuous test norming. Comments on the measurement of effect sizes for indirect effects in Bayesian analysis of variance. Lagged multidimensional recurrence quantification analysis for determining leader-follower relationships within multidimensional time series. The potential of preregistration in psychology: Assessing preregistration producibility and preregistration-study consistency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1