Fang Yuanpeng , Wei Jianming , Huang Xin , Qin Lei , Li Yunzhou
{"title":"猕猴桃科RNA干扰核心蛋白的进化、结构和功能分化","authors":"Fang Yuanpeng , Wei Jianming , Huang Xin , Qin Lei , Li Yunzhou","doi":"10.1016/j.plgene.2023.100419","DOIUrl":null,"url":null,"abstract":"<div><p>As a popular berry fruit rich in vitamin C, kiwifruit (family Actinidiaceae) is economically important. RNA interference (RNAi) is one of the main mechanisms of plant resistance to viruses, and small RNAs also mediate growth, development, and resistance to stress and disease. The RNAi pathway involves three main types of proteins: Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO). To gain a deeper understanding of small RNA formation and stress resistance mechanisms in kiwifruit, a comparative analysis of RNAi core gene regulatory families in Actinidiaceae was conducted. A total of 49, 20, and 111 <em>RDR</em>, <em>DCL</em>, and <em>AGO</em> genes were obtained from Actinidiaceae and initially corrected seven of them due to potential misannotation. These genes could be distinguished into four RDR, four DCL, and seven AGO protein classes and showed abundant subcellular localization and structural variation characteristics. Furthermore, the potential evolution of these RNAi-related genes was preliminarily characterized and clarified their unique expression profiles in tissues (expression patterns in different tissues and potential differences in gene expression between species) and in response to stresses (pathogen induction and storage). In conclusion, in this study, a systematic identification and comparative analysis of the RNAi core protein regulator family of Actinidiaceae was performed, and expression analysis was conducted on <em>Actidia chinensis</em>. These results are expected to reveal the evolutionary trends of the RNAi core protein family of Actinidiaceae and provide a reference for the evolutionary process of natural differences in sRNA formation and stress resistance in kiwifruit.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"34 ","pages":"Article 100419"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA interference-core proteins from the Actinidiaceae: Evolution, structure, and functional differentiation\",\"authors\":\"Fang Yuanpeng , Wei Jianming , Huang Xin , Qin Lei , Li Yunzhou\",\"doi\":\"10.1016/j.plgene.2023.100419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a popular berry fruit rich in vitamin C, kiwifruit (family Actinidiaceae) is economically important. RNA interference (RNAi) is one of the main mechanisms of plant resistance to viruses, and small RNAs also mediate growth, development, and resistance to stress and disease. The RNAi pathway involves three main types of proteins: Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO). To gain a deeper understanding of small RNA formation and stress resistance mechanisms in kiwifruit, a comparative analysis of RNAi core gene regulatory families in Actinidiaceae was conducted. A total of 49, 20, and 111 <em>RDR</em>, <em>DCL</em>, and <em>AGO</em> genes were obtained from Actinidiaceae and initially corrected seven of them due to potential misannotation. These genes could be distinguished into four RDR, four DCL, and seven AGO protein classes and showed abundant subcellular localization and structural variation characteristics. Furthermore, the potential evolution of these RNAi-related genes was preliminarily characterized and clarified their unique expression profiles in tissues (expression patterns in different tissues and potential differences in gene expression between species) and in response to stresses (pathogen induction and storage). In conclusion, in this study, a systematic identification and comparative analysis of the RNAi core protein regulator family of Actinidiaceae was performed, and expression analysis was conducted on <em>Actidia chinensis</em>. These results are expected to reveal the evolutionary trends of the RNAi core protein family of Actinidiaceae and provide a reference for the evolutionary process of natural differences in sRNA formation and stress resistance in kiwifruit.</p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"34 \",\"pages\":\"Article 100419\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407323000173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407323000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
RNA interference-core proteins from the Actinidiaceae: Evolution, structure, and functional differentiation
As a popular berry fruit rich in vitamin C, kiwifruit (family Actinidiaceae) is economically important. RNA interference (RNAi) is one of the main mechanisms of plant resistance to viruses, and small RNAs also mediate growth, development, and resistance to stress and disease. The RNAi pathway involves three main types of proteins: Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO). To gain a deeper understanding of small RNA formation and stress resistance mechanisms in kiwifruit, a comparative analysis of RNAi core gene regulatory families in Actinidiaceae was conducted. A total of 49, 20, and 111 RDR, DCL, and AGO genes were obtained from Actinidiaceae and initially corrected seven of them due to potential misannotation. These genes could be distinguished into four RDR, four DCL, and seven AGO protein classes and showed abundant subcellular localization and structural variation characteristics. Furthermore, the potential evolution of these RNAi-related genes was preliminarily characterized and clarified their unique expression profiles in tissues (expression patterns in different tissues and potential differences in gene expression between species) and in response to stresses (pathogen induction and storage). In conclusion, in this study, a systematic identification and comparative analysis of the RNAi core protein regulator family of Actinidiaceae was performed, and expression analysis was conducted on Actidia chinensis. These results are expected to reveal the evolutionary trends of the RNAi core protein family of Actinidiaceae and provide a reference for the evolutionary process of natural differences in sRNA formation and stress resistance in kiwifruit.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.