{"title":"基于叶型的超声速贯流风扇转子优化设计","authors":"Jutao Yang, L. Ji, Yuxin Shen, Lingchen Zhou","doi":"10.1515/tjj-2022-0082","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the authors propose an optimization process to design the baseline rotor of a supersonic through-flow fan (STFF) at an inlet Mach number of 2.0 based on Genetic Algorithm. Unlike the improvement in performance brought about by the pre-compression of conventional supersonic profiles in the presence of axial pressure flow, pre-compression did not help improve the performance of the rotor of the STFF. The efficiency of elements of the blade at spanwise heights of 10 %, 50 %, and 90 % increased by 2.47 %, 1.95 %, and 2.49 %, respectively. The performance of the rotor of the STFF that was reconstructed by stacking the optimized elements of the blade was improved at the design point as well as in off-design conditions by using three-dimensional computational fluid dynamics (CFD) simulations. The performance of the blade also improved considerably, with increases of by 2.46 % and 9.59 % in its isentropic efficiency and the overall pressure ratio, respectively.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design optimization of a supersonic through-flow fan rotor based on the blade profiles\",\"authors\":\"Jutao Yang, L. Ji, Yuxin Shen, Lingchen Zhou\",\"doi\":\"10.1515/tjj-2022-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the authors propose an optimization process to design the baseline rotor of a supersonic through-flow fan (STFF) at an inlet Mach number of 2.0 based on Genetic Algorithm. Unlike the improvement in performance brought about by the pre-compression of conventional supersonic profiles in the presence of axial pressure flow, pre-compression did not help improve the performance of the rotor of the STFF. The efficiency of elements of the blade at spanwise heights of 10 %, 50 %, and 90 % increased by 2.47 %, 1.95 %, and 2.49 %, respectively. The performance of the rotor of the STFF that was reconstructed by stacking the optimized elements of the blade was improved at the design point as well as in off-design conditions by using three-dimensional computational fluid dynamics (CFD) simulations. The performance of the blade also improved considerably, with increases of by 2.46 % and 9.59 % in its isentropic efficiency and the overall pressure ratio, respectively.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2022-0082\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Design optimization of a supersonic through-flow fan rotor based on the blade profiles
Abstract In this study, the authors propose an optimization process to design the baseline rotor of a supersonic through-flow fan (STFF) at an inlet Mach number of 2.0 based on Genetic Algorithm. Unlike the improvement in performance brought about by the pre-compression of conventional supersonic profiles in the presence of axial pressure flow, pre-compression did not help improve the performance of the rotor of the STFF. The efficiency of elements of the blade at spanwise heights of 10 %, 50 %, and 90 % increased by 2.47 %, 1.95 %, and 2.49 %, respectively. The performance of the rotor of the STFF that was reconstructed by stacking the optimized elements of the blade was improved at the design point as well as in off-design conditions by using three-dimensional computational fluid dynamics (CFD) simulations. The performance of the blade also improved considerably, with increases of by 2.46 % and 9.59 % in its isentropic efficiency and the overall pressure ratio, respectively.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.