{"title":"FDM制造PLA零件:工艺参数对压缩和弯曲载荷下力学性能影响的实验研究","authors":"Shailendra Kumar, Soham Teraiya, Vishal Kumar Koriya","doi":"10.54684/ijmmt.2022.14.2.111","DOIUrl":null,"url":null,"abstract":"The present paper describes an experimental investigation on mechanical properties of poly-lactic-acid (PLA) parts under compressive and flexural loading. The PLA parts are fabricated by fused deposition modelling (FDM) technique. In present work, effect of raster angle, raster width and infill density on strength and modulus of parts under compressive and flexural loading is studied. It is found that infill density affects compressive strength and modulus of parts significantly under compressive loading. Compressive properties increase with increase in infill density. Further, it is found that raster width and infill density significantly influence flexural strength and modulus. Flexural properties increase with increase in infill density, and decrease in decrease in raster width. Further, predictive models are developed for responses, and process parameters are optimized using genetic algorithm to maximize the responses.","PeriodicalId":38009,"journal":{"name":"International Journal of Modern Manufacturing Technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FDM FABRICATED PLA PARTS: AN EXPERIMENTAL STUDY OF EFFECT OF PROCESS PARAMETERS ON MECHANICAL PROPERTIES UNDER COMPRESSIVE AND FLEXURAL LOADING\",\"authors\":\"Shailendra Kumar, Soham Teraiya, Vishal Kumar Koriya\",\"doi\":\"10.54684/ijmmt.2022.14.2.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper describes an experimental investigation on mechanical properties of poly-lactic-acid (PLA) parts under compressive and flexural loading. The PLA parts are fabricated by fused deposition modelling (FDM) technique. In present work, effect of raster angle, raster width and infill density on strength and modulus of parts under compressive and flexural loading is studied. It is found that infill density affects compressive strength and modulus of parts significantly under compressive loading. Compressive properties increase with increase in infill density. Further, it is found that raster width and infill density significantly influence flexural strength and modulus. Flexural properties increase with increase in infill density, and decrease in decrease in raster width. Further, predictive models are developed for responses, and process parameters are optimized using genetic algorithm to maximize the responses.\",\"PeriodicalId\":38009,\"journal\":{\"name\":\"International Journal of Modern Manufacturing Technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Manufacturing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54684/ijmmt.2022.14.2.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Manufacturing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54684/ijmmt.2022.14.2.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
FDM FABRICATED PLA PARTS: AN EXPERIMENTAL STUDY OF EFFECT OF PROCESS PARAMETERS ON MECHANICAL PROPERTIES UNDER COMPRESSIVE AND FLEXURAL LOADING
The present paper describes an experimental investigation on mechanical properties of poly-lactic-acid (PLA) parts under compressive and flexural loading. The PLA parts are fabricated by fused deposition modelling (FDM) technique. In present work, effect of raster angle, raster width and infill density on strength and modulus of parts under compressive and flexural loading is studied. It is found that infill density affects compressive strength and modulus of parts significantly under compressive loading. Compressive properties increase with increase in infill density. Further, it is found that raster width and infill density significantly influence flexural strength and modulus. Flexural properties increase with increase in infill density, and decrease in decrease in raster width. Further, predictive models are developed for responses, and process parameters are optimized using genetic algorithm to maximize the responses.
期刊介绍:
The main topics of the journal are: Micro & Nano Technologies; Rapid Prototyping Technologies; High Speed Manufacturing Processes; Ecological Technologies in Machine Manufacturing; Manufacturing and Automation; Flexible Manufacturing; New Manufacturing Processes; Design, Control and Exploitation; Assembly and Disassembly; Cold Forming Technologies; Optimization of Experimental Research and Manufacturing Processes; Maintenance, Reliability, Life Cycle Time and Cost; CAD/CAM/CAE/CAX Integrated Systems; Composite Materials Technologies; Non-conventional Technologies; Concurrent Engineering; Virtual Manufacturing; Innovation, Creativity and Industrial Development.