KACST新型紧凑型ECR静电存储环离子源调试结果

Q3 Physics and Astronomy Instruments Pub Date : 2023-02-23 DOI:10.3390/instruments7010011
S. Alshammari, A. Jabr, Saad Jaddua, Abdulhakim Alabadusalam
{"title":"KACST新型紧凑型ECR静电存储环离子源调试结果","authors":"S. Alshammari, A. Jabr, Saad Jaddua, Abdulhakim Alabadusalam","doi":"10.3390/instruments7010011","DOIUrl":null,"url":null,"abstract":"A compact microwave ECR ion source with low operating power was tested and commissioned for the ion injector line in the multipurpose low-energy ELASR storage ring facility at King Abdulaziz City for Science and Technology (KACST) in Riyadh. The compact ECR ion source can deliver singly charged ions with an energy of up to 50 keV and a beam current of up to 50 μA or up to 500 µA with a larger extraction aperture. The plasma in the ECR chamber is driven by a simple transmitter antenna, making the overall size of the ion source only 6 cm in diameter, which is relatively small when compared with other ECR systems. Additionally, the source operates without a high-voltage platform, which significantly reduces the overall footprint and simplifies the system operation. In this paper, the mechanical design and modeling of the ECR ion source are introduced, and the layout of the first part of the beam line is presented along with the numerical simulation results. In addition, the experimental results obtained for the first generated ion beam and commissioning of the ECR ion source are introduced and discussed.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commissioning Results of the New Compact ECR Ion Source for Electrostatic Storage Ring at KACST\",\"authors\":\"S. Alshammari, A. Jabr, Saad Jaddua, Abdulhakim Alabadusalam\",\"doi\":\"10.3390/instruments7010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact microwave ECR ion source with low operating power was tested and commissioned for the ion injector line in the multipurpose low-energy ELASR storage ring facility at King Abdulaziz City for Science and Technology (KACST) in Riyadh. The compact ECR ion source can deliver singly charged ions with an energy of up to 50 keV and a beam current of up to 50 μA or up to 500 µA with a larger extraction aperture. The plasma in the ECR chamber is driven by a simple transmitter antenna, making the overall size of the ion source only 6 cm in diameter, which is relatively small when compared with other ECR systems. Additionally, the source operates without a high-voltage platform, which significantly reduces the overall footprint and simplifies the system operation. In this paper, the mechanical design and modeling of the ECR ion source are introduced, and the layout of the first part of the beam line is presented along with the numerical simulation results. In addition, the experimental results obtained for the first generated ion beam and commissioning of the ECR ion source are introduced and discussed.\",\"PeriodicalId\":13582,\"journal\":{\"name\":\"Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments7010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在利雅得阿卜杜勒阿齐兹国王科技城(KACST)的多用途低能ELASR存储环设施中,对一种低工作功率的紧凑型微波ECR离子源进行了测试,并在离子注入线上进行了调试。紧凑的ECR离子源可以输送能量高达50 keV的单电荷离子,光束电流高达50 μA或500 μA,提取孔径更大。ECR腔室中的等离子体由一个简单的发射天线驱动,使得离子源的总直径只有6厘米,与其他ECR系统相比,这是相对较小的。此外,该电源无需高压平台即可运行,这大大减少了总体占地面积,简化了系统操作。本文介绍了ECR离子源的力学设计和建模,并结合数值模拟结果给出了第一部分束流线的布置。此外,还介绍和讨论了ECR离子源首次产生离子束的实验结果和调试情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Commissioning Results of the New Compact ECR Ion Source for Electrostatic Storage Ring at KACST
A compact microwave ECR ion source with low operating power was tested and commissioned for the ion injector line in the multipurpose low-energy ELASR storage ring facility at King Abdulaziz City for Science and Technology (KACST) in Riyadh. The compact ECR ion source can deliver singly charged ions with an energy of up to 50 keV and a beam current of up to 50 μA or up to 500 µA with a larger extraction aperture. The plasma in the ECR chamber is driven by a simple transmitter antenna, making the overall size of the ion source only 6 cm in diameter, which is relatively small when compared with other ECR systems. Additionally, the source operates without a high-voltage platform, which significantly reduces the overall footprint and simplifies the system operation. In this paper, the mechanical design and modeling of the ECR ion source are introduced, and the layout of the first part of the beam line is presented along with the numerical simulation results. In addition, the experimental results obtained for the first generated ion beam and commissioning of the ECR ion source are introduced and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Instruments
Instruments Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
0.00%
发文量
70
审稿时长
11 weeks
期刊最新文献
Red and Green Laser Powder Bed Fusion of Pure Copper in Combination with Chemical Post-Processing for RF Cavity Fabrication Improved Production of Novel Radioisotopes with Custom Energy Cyclone® Kiube High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence Microparticle Hybrid Target Simulation for keV X-ray Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1