使用机器学习算法的有毒气体检测和容忍等级分类

S. Deepan, M. Saravanan
{"title":"使用机器学习算法的有毒气体检测和容忍等级分类","authors":"S. Deepan, M. Saravanan","doi":"10.24425/ijet.2023.146498","DOIUrl":null,"url":null,"abstract":"— with rapid population increases, people are facing the challenge to maintain healthy conditions. One of the challenges is air pollution. Due to industrial development and vehicle usage air pollution is becoming a high threat to human life. This air pollution forms through various toxic contaminants. This toxic contamination levels increase and cause severe damage to the living things in the environment. To identify the toxic level present in the polluted air various methods were proposed by the authors, But failed to detect the tolerance level of toxic gases. This article discusses the methods to detect toxic gasses and classify the tolerance level of gasses present in polluted air. Various sensors and different algorithms are used for classifying the tolerance level. For this purpose “Artificial Sensing Methodology” (ASM), commonly known as e-nose, is a technique for detecting harmful gases. SO2-D4, NO2-D4, MQ-135, MQ136, MQ-7, and other sensors are used in artificial sensing methods (e-nose). “Carbon monoxide, Sulfur dioxide, nitrogen dioxide, and carbon dioxide” are all detected by these sensors. The data collected by sensors is sent to the data register from there it is sent to the Machine learning Training module (ML) and the comparison is done with real-time data and trained data. If the values increase beyond the tolerance level the system will give the alarm and release the oxygen.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic Gases Detection and Tolerance Level Classification Using Machine Learning Algorithms\",\"authors\":\"S. Deepan, M. Saravanan\",\"doi\":\"10.24425/ijet.2023.146498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— with rapid population increases, people are facing the challenge to maintain healthy conditions. One of the challenges is air pollution. Due to industrial development and vehicle usage air pollution is becoming a high threat to human life. This air pollution forms through various toxic contaminants. This toxic contamination levels increase and cause severe damage to the living things in the environment. To identify the toxic level present in the polluted air various methods were proposed by the authors, But failed to detect the tolerance level of toxic gases. This article discusses the methods to detect toxic gasses and classify the tolerance level of gasses present in polluted air. Various sensors and different algorithms are used for classifying the tolerance level. For this purpose “Artificial Sensing Methodology” (ASM), commonly known as e-nose, is a technique for detecting harmful gases. SO2-D4, NO2-D4, MQ-135, MQ136, MQ-7, and other sensors are used in artificial sensing methods (e-nose). “Carbon monoxide, Sulfur dioxide, nitrogen dioxide, and carbon dioxide” are all detected by these sensors. The data collected by sensors is sent to the data register from there it is sent to the Machine learning Training module (ML) and the comparison is done with real-time data and trained data. If the values increase beyond the tolerance level the system will give the alarm and release the oxygen.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2023.146498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2023.146498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

-随着人口的迅速增长,人们面临着保持健康条件的挑战。其中一个挑战是空气污染。由于工业的发展和车辆的使用,空气污染正成为对人类生命的严重威胁。这种空气污染是通过各种有毒污染物形成的。这种有毒污染水平增加,对环境中的生物造成严重损害。为了确定污染空气中存在的毒性水平,作者提出了各种方法,但未能检测出有毒气体的耐受水平。本文讨论了检测污染空气中有毒气体的方法和对污染空气中存在的气体的容忍水平进行分类。不同的传感器和不同的算法用于公差等级的分类。为此,“人工传感方法”(ASM),俗称电子鼻,是一种检测有害气体的技术。SO2-D4、NO2-D4、MQ-135、MQ136、MQ-7等传感器用于人工传感方法(电子鼻)。“一氧化碳、二氧化硫、二氧化氮和二氧化碳”都由这些传感器检测到。传感器收集的数据被发送到数据寄存器,从那里发送到机器学习训练模块(ML),并与实时数据和训练数据进行比较。如果该值超过容限水平,系统将发出警报并释放氧气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toxic Gases Detection and Tolerance Level Classification Using Machine Learning Algorithms
— with rapid population increases, people are facing the challenge to maintain healthy conditions. One of the challenges is air pollution. Due to industrial development and vehicle usage air pollution is becoming a high threat to human life. This air pollution forms through various toxic contaminants. This toxic contamination levels increase and cause severe damage to the living things in the environment. To identify the toxic level present in the polluted air various methods were proposed by the authors, But failed to detect the tolerance level of toxic gases. This article discusses the methods to detect toxic gasses and classify the tolerance level of gasses present in polluted air. Various sensors and different algorithms are used for classifying the tolerance level. For this purpose “Artificial Sensing Methodology” (ASM), commonly known as e-nose, is a technique for detecting harmful gases. SO2-D4, NO2-D4, MQ-135, MQ136, MQ-7, and other sensors are used in artificial sensing methods (e-nose). “Carbon monoxide, Sulfur dioxide, nitrogen dioxide, and carbon dioxide” are all detected by these sensors. The data collected by sensors is sent to the data register from there it is sent to the Machine learning Training module (ML) and the comparison is done with real-time data and trained data. If the values increase beyond the tolerance level the system will give the alarm and release the oxygen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1