{"title":"脲醛提取物改性胶合板对甲醛释放量的影响","authors":"Uğur Bilgin, G. Colakoglu","doi":"10.5552/drvind.2021.2005","DOIUrl":null,"url":null,"abstract":"Formaldehyde-based adhesives are used in the forestry industry. This is because formaldehyde is inexpensive, easy to use and resistant to moisture; it also has particular mechanical effects. Formaldehyde has both advantages and disadvantages. It is known that various diseases such as lung cancer occur in humans as a result of the release of formaldehyde into the air during and after board production. In this study, a urea formaldehyde glue mixture was prepared by using four different fillers (extract of maritime pine (Pinus pinaster) and elm (Ulmus glabra) bark, extract of hazelnut (Corylus avellana) husk and acorn tannins) at two different ratios. The bonding shear strength of pine (Pinus sylvestris) and spruce (Picea orientalis) plywood produced with urea formaldehyde adhesive was tested according to EN 314-1 standard. All plywood, except the plywood with acorn tannin, met the requirements of the standard. A formaldehyde emission test of the plywood was carried out in accordance with EN 713-3 standard. With this approach, it is possible to quickly determine formaldehyde emissions. Experimental results were obtained for subsequent measurements, including chamber tests. It was observed that the elm bark extract reduced the formaldehyde emission of pine plywood by 40 %, while other fillers reduced it by 3-37 %.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Using Urea Formaldehyde Modified with Extracts in Plywood on Formaldehyde Emission\",\"authors\":\"Uğur Bilgin, G. Colakoglu\",\"doi\":\"10.5552/drvind.2021.2005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formaldehyde-based adhesives are used in the forestry industry. This is because formaldehyde is inexpensive, easy to use and resistant to moisture; it also has particular mechanical effects. Formaldehyde has both advantages and disadvantages. It is known that various diseases such as lung cancer occur in humans as a result of the release of formaldehyde into the air during and after board production. In this study, a urea formaldehyde glue mixture was prepared by using four different fillers (extract of maritime pine (Pinus pinaster) and elm (Ulmus glabra) bark, extract of hazelnut (Corylus avellana) husk and acorn tannins) at two different ratios. The bonding shear strength of pine (Pinus sylvestris) and spruce (Picea orientalis) plywood produced with urea formaldehyde adhesive was tested according to EN 314-1 standard. All plywood, except the plywood with acorn tannin, met the requirements of the standard. A formaldehyde emission test of the plywood was carried out in accordance with EN 713-3 standard. With this approach, it is possible to quickly determine formaldehyde emissions. Experimental results were obtained for subsequent measurements, including chamber tests. It was observed that the elm bark extract reduced the formaldehyde emission of pine plywood by 40 %, while other fillers reduced it by 3-37 %.\",\"PeriodicalId\":11427,\"journal\":{\"name\":\"Drvna Industrija\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drvna Industrija\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5552/drvind.2021.2005\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2021.2005","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Effect of Using Urea Formaldehyde Modified with Extracts in Plywood on Formaldehyde Emission
Formaldehyde-based adhesives are used in the forestry industry. This is because formaldehyde is inexpensive, easy to use and resistant to moisture; it also has particular mechanical effects. Formaldehyde has both advantages and disadvantages. It is known that various diseases such as lung cancer occur in humans as a result of the release of formaldehyde into the air during and after board production. In this study, a urea formaldehyde glue mixture was prepared by using four different fillers (extract of maritime pine (Pinus pinaster) and elm (Ulmus glabra) bark, extract of hazelnut (Corylus avellana) husk and acorn tannins) at two different ratios. The bonding shear strength of pine (Pinus sylvestris) and spruce (Picea orientalis) plywood produced with urea formaldehyde adhesive was tested according to EN 314-1 standard. All plywood, except the plywood with acorn tannin, met the requirements of the standard. A formaldehyde emission test of the plywood was carried out in accordance with EN 713-3 standard. With this approach, it is possible to quickly determine formaldehyde emissions. Experimental results were obtained for subsequent measurements, including chamber tests. It was observed that the elm bark extract reduced the formaldehyde emission of pine plywood by 40 %, while other fillers reduced it by 3-37 %.
期刊介绍:
"Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.