Caroline Ribeiro Pereira, L. A. Abreu, D. Knupp, L. Jardim, Matheus Henrique da Silva Siqueira
{"title":"不确定条件下蒙特卡罗方法在耦合深部脑刺激导联生物传热问题中的应用","authors":"Caroline Ribeiro Pereira, L. A. Abreu, D. Knupp, L. Jardim, Matheus Henrique da Silva Siqueira","doi":"10.4028/p-b6Ix0E","DOIUrl":null,"url":null,"abstract":"This article deals with an analysis of uncertainties applied to a bioheat transfer problem containing a deep brain stimulation lead. The classic two-dimensional bioheat transfer equation in cylindrical coordinates was considered in the mathematical formulation. The electric potential was solved with a Laplace equation to incorporate the DBS lead effects. Thus, the solution for the electric potential was coupled to the temperature problem, considering an external heat transfer rate. The analysis under uncertainties was performed by the Monte Carlo method considering different types of uncertainties for all parameters of the mathematical model. The uncertainties were chosen according to the information available in the literature in order to analyze the problem more realistically. The solutions showed a significant variation in the temperature profile over time when considering the random variations in the parameters.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"427 1","pages":"37 - 46"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis under Uncertainty with the Monte Carlo Method Applied to a Bioheat Transfer Problem with Coupled Deep Brain Stimulation Lead\",\"authors\":\"Caroline Ribeiro Pereira, L. A. Abreu, D. Knupp, L. Jardim, Matheus Henrique da Silva Siqueira\",\"doi\":\"10.4028/p-b6Ix0E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with an analysis of uncertainties applied to a bioheat transfer problem containing a deep brain stimulation lead. The classic two-dimensional bioheat transfer equation in cylindrical coordinates was considered in the mathematical formulation. The electric potential was solved with a Laplace equation to incorporate the DBS lead effects. Thus, the solution for the electric potential was coupled to the temperature problem, considering an external heat transfer rate. The analysis under uncertainties was performed by the Monte Carlo method considering different types of uncertainties for all parameters of the mathematical model. The uncertainties were chosen according to the information available in the literature in order to analyze the problem more realistically. The solutions showed a significant variation in the temperature profile over time when considering the random variations in the parameters.\",\"PeriodicalId\":11306,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":\"427 1\",\"pages\":\"37 - 46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-b6Ix0E\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-b6Ix0E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Analysis under Uncertainty with the Monte Carlo Method Applied to a Bioheat Transfer Problem with Coupled Deep Brain Stimulation Lead
This article deals with an analysis of uncertainties applied to a bioheat transfer problem containing a deep brain stimulation lead. The classic two-dimensional bioheat transfer equation in cylindrical coordinates was considered in the mathematical formulation. The electric potential was solved with a Laplace equation to incorporate the DBS lead effects. Thus, the solution for the electric potential was coupled to the temperature problem, considering an external heat transfer rate. The analysis under uncertainties was performed by the Monte Carlo method considering different types of uncertainties for all parameters of the mathematical model. The uncertainties were chosen according to the information available in the literature in order to analyze the problem more realistically. The solutions showed a significant variation in the temperature profile over time when considering the random variations in the parameters.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.