亚纳秒级脉冲电场对人体肿瘤细胞的作用

IF 1.8 3区 生物学 Q3 BIOLOGY Bioelectromagnetics Pub Date : 2022-05-10 DOI:10.1002/bem.22408
Aleksey A. Petrov, Anastasiya A. Moraleva, Nadezhda V. Antipova, Ravil Kh. Amirov, Igor S. Samoylov, Sergey Y. Savinov
{"title":"亚纳秒级脉冲电场对人体肿瘤细胞的作用","authors":"Aleksey A. Petrov,&nbsp;Anastasiya A. Moraleva,&nbsp;Nadezhda V. Antipova,&nbsp;Ravil Kh. Amirov,&nbsp;Igor S. Samoylov,&nbsp;Sergey Y. Savinov","doi":"10.1002/bem.22408","DOIUrl":null,"url":null,"abstract":"<p>The action of the pulsed electric field of the subnanosecond range on Jurkat, HEK 293, and U-87 MG human cell lines was studied. The cells were treated in a waveguide in 0.18 ml electrodeless Teflon cuvettes. The electric field strength in the cell culture medium was ~2 kV/cm, the pulse duration was ~1 ns, the leading edge was 150 ps, the frequency was 100 Hz, and the treatment time was 5 min. According to estimates, the change of the transmembrane potential during the pulse was ~20 mV and we assume that it was insufficient for electroporation. Jurkat and HEK 293 cells appeared to be more resistant to the treatment than U-87 MG cells. We have observed that the impulses with the above-mentioned parameters can cause a noticeable change in the mitochondrial activity of U-87 MG cells. © 2022 Bioelectromagnetics Society.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"43 5","pages":"327-335"},"PeriodicalIF":1.8000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Action of the Pulsed Electric Field of the Subnanosecond Range on Human Tumor Cells\",\"authors\":\"Aleksey A. Petrov,&nbsp;Anastasiya A. Moraleva,&nbsp;Nadezhda V. Antipova,&nbsp;Ravil Kh. Amirov,&nbsp;Igor S. Samoylov,&nbsp;Sergey Y. Savinov\",\"doi\":\"10.1002/bem.22408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The action of the pulsed electric field of the subnanosecond range on Jurkat, HEK 293, and U-87 MG human cell lines was studied. The cells were treated in a waveguide in 0.18 ml electrodeless Teflon cuvettes. The electric field strength in the cell culture medium was ~2 kV/cm, the pulse duration was ~1 ns, the leading edge was 150 ps, the frequency was 100 Hz, and the treatment time was 5 min. According to estimates, the change of the transmembrane potential during the pulse was ~20 mV and we assume that it was insufficient for electroporation. Jurkat and HEK 293 cells appeared to be more resistant to the treatment than U-87 MG cells. We have observed that the impulses with the above-mentioned parameters can cause a noticeable change in the mitochondrial activity of U-87 MG cells. © 2022 Bioelectromagnetics Society.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":\"43 5\",\"pages\":\"327-335\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22408\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22408","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了亚纳秒级脉冲电场对人Jurkat、HEK 293和U-87 MG细胞株的作用。细胞在0.18 ml无极聚四氟乙烯试管中的波导中处理。细胞培养基中的电场强度为~2 kV/cm,脉冲持续时间为~1 ns,前缘为150 ps,频率为100 Hz,处理时间为5 min。根据估计,脉冲过程中跨膜电位的变化为~20 mV,我们认为这不足以进行电穿孔。Jurkat和HEK 293细胞似乎比U-87 MG细胞更耐药。我们观察到具有上述参数的脉冲可以引起U-87 MG细胞线粒体活性的明显变化。©2022生物电磁学学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Action of the Pulsed Electric Field of the Subnanosecond Range on Human Tumor Cells

The action of the pulsed electric field of the subnanosecond range on Jurkat, HEK 293, and U-87 MG human cell lines was studied. The cells were treated in a waveguide in 0.18 ml electrodeless Teflon cuvettes. The electric field strength in the cell culture medium was ~2 kV/cm, the pulse duration was ~1 ns, the leading edge was 150 ps, the frequency was 100 Hz, and the treatment time was 5 min. According to estimates, the change of the transmembrane potential during the pulse was ~20 mV and we assume that it was insufficient for electroporation. Jurkat and HEK 293 cells appeared to be more resistant to the treatment than U-87 MG cells. We have observed that the impulses with the above-mentioned parameters can cause a noticeable change in the mitochondrial activity of U-87 MG cells. © 2022 Bioelectromagnetics Society.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
期刊最新文献
The effect of mobile phone electromagnetic fields on the human resting state wake EEG and event-related potential: A systematic review and meta-analysis. Issue Information Numerical and analytical inspection of magnetic field effects in the radical pair mechanism by a simplified rate equation model Action potential threshold variability for different electrostimulation models and its potential impact on occupational exposure limit values. Characterising core body temperature response of free-moving C57BL/6 mice to 1.95 GHz whole-body radiofrequency-electromagnetic fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1