Lihui Liu, Shuai Zhang, Qinfu Liu, Linsong Liu, Youjun Deng
{"title":"控制坡缕石粘土岩形成的古气候、古盐度和氧化还原条件——以西北羊台洼滩盆地为例","authors":"Lihui Liu, Shuai Zhang, Qinfu Liu, Linsong Liu, Youjun Deng","doi":"10.1180/clm.2022.1","DOIUrl":null,"url":null,"abstract":"Abstract Palygorskite-bearing claystones and mudstones were deposited in a salt lake in the middle and lower parts of the Neogene Baiyanghe Formation in the Yangtaiwatan Basin, China. The petrological, mineralogical and geochemical characteristics of the sediments were investigated to determine the factors controlling palygorskite formation. The palygorskite claystones and mudstones have distinctly varying mineral compositions. The claystones are composed of detrital minerals, palygorskite and illite, whereas the mudstones consist mainly of mixed-layer illite/smectite and illite. The palygorskite crystals were intact with sharp edges and interwoven with other minerals, indicating an authigenic origin. The chemical characteristics indicate that the palygorskite claystones in the middle part of the Baiyanghe Formation were deposited in a salt lake environment in an arid and hot climate. As the salinity of the lake gradually increased, the detrital minerals such as quartz, feldspar, dolomite and detrital clay minerals dissolved in the alkaline medium, thus providing Si4+, Mg2+ and Al3+ for the crystallization of palygorskite. The palygorskite coexists with certain amounts of detrital quartz and feldspar with limited roundness and sorting, indicating that the shallow lake of the basin under an oxidation environment may represent a favourable environment for the crystallization of palygorskite.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"210 - 221"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Palaeoclimate, palaeosalinity and redox conditions control palygorskite claystone formation: an example from the Yangtaiwatan Basin, northwest China\",\"authors\":\"Lihui Liu, Shuai Zhang, Qinfu Liu, Linsong Liu, Youjun Deng\",\"doi\":\"10.1180/clm.2022.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Palygorskite-bearing claystones and mudstones were deposited in a salt lake in the middle and lower parts of the Neogene Baiyanghe Formation in the Yangtaiwatan Basin, China. The petrological, mineralogical and geochemical characteristics of the sediments were investigated to determine the factors controlling palygorskite formation. The palygorskite claystones and mudstones have distinctly varying mineral compositions. The claystones are composed of detrital minerals, palygorskite and illite, whereas the mudstones consist mainly of mixed-layer illite/smectite and illite. The palygorskite crystals were intact with sharp edges and interwoven with other minerals, indicating an authigenic origin. The chemical characteristics indicate that the palygorskite claystones in the middle part of the Baiyanghe Formation were deposited in a salt lake environment in an arid and hot climate. As the salinity of the lake gradually increased, the detrital minerals such as quartz, feldspar, dolomite and detrital clay minerals dissolved in the alkaline medium, thus providing Si4+, Mg2+ and Al3+ for the crystallization of palygorskite. The palygorskite coexists with certain amounts of detrital quartz and feldspar with limited roundness and sorting, indicating that the shallow lake of the basin under an oxidation environment may represent a favourable environment for the crystallization of palygorskite.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":\"56 1\",\"pages\":\"210 - 221\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2022.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2022.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Palaeoclimate, palaeosalinity and redox conditions control palygorskite claystone formation: an example from the Yangtaiwatan Basin, northwest China
Abstract Palygorskite-bearing claystones and mudstones were deposited in a salt lake in the middle and lower parts of the Neogene Baiyanghe Formation in the Yangtaiwatan Basin, China. The petrological, mineralogical and geochemical characteristics of the sediments were investigated to determine the factors controlling palygorskite formation. The palygorskite claystones and mudstones have distinctly varying mineral compositions. The claystones are composed of detrital minerals, palygorskite and illite, whereas the mudstones consist mainly of mixed-layer illite/smectite and illite. The palygorskite crystals were intact with sharp edges and interwoven with other minerals, indicating an authigenic origin. The chemical characteristics indicate that the palygorskite claystones in the middle part of the Baiyanghe Formation were deposited in a salt lake environment in an arid and hot climate. As the salinity of the lake gradually increased, the detrital minerals such as quartz, feldspar, dolomite and detrital clay minerals dissolved in the alkaline medium, thus providing Si4+, Mg2+ and Al3+ for the crystallization of palygorskite. The palygorskite coexists with certain amounts of detrital quartz and feldspar with limited roundness and sorting, indicating that the shallow lake of the basin under an oxidation environment may represent a favourable environment for the crystallization of palygorskite.
期刊介绍:
Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.