燃烧持续时间对氢-乙醇双燃料发动机排放的影响:实验分析

S. Yousufuddin
{"title":"燃烧持续时间对氢-乙醇双燃料发动机排放的影响:实验分析","authors":"S. Yousufuddin","doi":"10.14203/j.mev.2018.v9.41-48","DOIUrl":null,"url":null,"abstract":"The research presented in this article expresses experimental results on combustion duration effect on the dual fueled engine. In particular, the research was focused on the emissions occurred specifically from a hydrogen-ethanol dual fueled engine. This study was performed on a compression ignition engine that was converted to run and act as a spark ignition engine. This modified engine was fueled by hydrogen–ethanol with various percentage substitutions of hydrogen. The substitution was altered from 20 to 80% at a constant speed of 1500 rpm. The various engine emission characteristics such as CO, Hydrocarbon, and NOx were experimentally determined. This study resulted that at a compression ratio of 11:1 and combustion duration of 25°CA, the best operating conditions of the engine were shown. Moreover, the optimum fuel combination was established at 60 to 80% of hydrogen substitution to ethanol. The experimental results also revealed that at 100% load and at compression ratios 7, 9, and 11; the CO and HC emissions have decreased while NOx increased and followed with the increase in the percentage of hydrogen addition and combustion duration. It was concluded that the retarding combustion duration was preferred for NOx emission control in the engine.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combustion duration influence on hydrogen-ethanol dual fueled engine emissions: An experimental analysis\",\"authors\":\"S. Yousufuddin\",\"doi\":\"10.14203/j.mev.2018.v9.41-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research presented in this article expresses experimental results on combustion duration effect on the dual fueled engine. In particular, the research was focused on the emissions occurred specifically from a hydrogen-ethanol dual fueled engine. This study was performed on a compression ignition engine that was converted to run and act as a spark ignition engine. This modified engine was fueled by hydrogen–ethanol with various percentage substitutions of hydrogen. The substitution was altered from 20 to 80% at a constant speed of 1500 rpm. The various engine emission characteristics such as CO, Hydrocarbon, and NOx were experimentally determined. This study resulted that at a compression ratio of 11:1 and combustion duration of 25°CA, the best operating conditions of the engine were shown. Moreover, the optimum fuel combination was established at 60 to 80% of hydrogen substitution to ethanol. The experimental results also revealed that at 100% load and at compression ratios 7, 9, and 11; the CO and HC emissions have decreased while NOx increased and followed with the increase in the percentage of hydrogen addition and combustion duration. It was concluded that the retarding combustion duration was preferred for NOx emission control in the engine.\",\"PeriodicalId\":30530,\"journal\":{\"name\":\"Journal of Mechatronics Electrical Power and Vehicular Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechatronics Electrical Power and Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14203/j.mev.2018.v9.41-48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechatronics Electrical Power and Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/j.mev.2018.v9.41-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了双燃料发动机燃烧持续时间效应的实验结果。特别是,研究的重点是氢乙醇双燃料发动机的排放。这项研究是在一台压燃式发动机上进行的,该发动机被改装为运行并充当火花点火式发动机。这种改进后的发动机由氢气-乙醇提供燃料,其中含有不同百分比的氢气替代物。在1500rpm的恒定速度下,取代率从20%改变到80%。通过实验确定了各种发动机排放特性,如CO、碳氢化合物和NOx。这项研究表明,在压缩比为11:1、燃烧持续时间为25°CA的情况下,发动机的最佳运行条件得到了证明。此外,最佳燃料组合是在乙醇的氢取代率为60%至80%时确定的。实验结果还表明,在100%负载和压缩比为7、9和11时;CO和HC排放量减少,而NOx增加。得出的结论是,延迟燃烧持续时间对于发动机中的NOx排放控制是优选的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combustion duration influence on hydrogen-ethanol dual fueled engine emissions: An experimental analysis
The research presented in this article expresses experimental results on combustion duration effect on the dual fueled engine. In particular, the research was focused on the emissions occurred specifically from a hydrogen-ethanol dual fueled engine. This study was performed on a compression ignition engine that was converted to run and act as a spark ignition engine. This modified engine was fueled by hydrogen–ethanol with various percentage substitutions of hydrogen. The substitution was altered from 20 to 80% at a constant speed of 1500 rpm. The various engine emission characteristics such as CO, Hydrocarbon, and NOx were experimentally determined. This study resulted that at a compression ratio of 11:1 and combustion duration of 25°CA, the best operating conditions of the engine were shown. Moreover, the optimum fuel combination was established at 60 to 80% of hydrogen substitution to ethanol. The experimental results also revealed that at 100% load and at compression ratios 7, 9, and 11; the CO and HC emissions have decreased while NOx increased and followed with the increase in the percentage of hydrogen addition and combustion duration. It was concluded that the retarding combustion duration was preferred for NOx emission control in the engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
10
期刊最新文献
Five-axis parallel mechanism system (PMS) CNC partial link control system based on modified inverse kinematic of 6-DOF UPS parallel manipulator Impact of road load parameters on vehicle CO₂ emissions and fuel economy: A case study in Indonesia LSTM-based forecasting on electric vehicles battery swapping demand: Addressing infrastructure challenge in Indonesia Stability analysis of a hybrid DC-DC buck converter model using dissipation inequality and convex optimization Artificial intelligence in smart grids: A bibliometric analysis and scientific mapping study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1