{"title":"二硫化钼记忆器件的脉冲程序化短期可塑性和长期增强","authors":"S. Ki, Mingze Chen, Xiaogan Liang","doi":"10.1109/MNANO.2023.3297105","DOIUrl":null,"url":null,"abstract":"Short-term plasticity (STP) and long-term potentiation (LTP) properties of neural synapses are crucial for developing complex neuromorphic systems and functions. In this work, we fabricated two-terminal memristors with multi-layer MoS2 channels and investigated pulse-programmed short-term and long-term synaptic responses. This work indicates that MoS2 memristors exhibit different magnitudes of STP and LTP effects under different pulse programming settings. Specifically, we utilized the paired-pulse facilitation (PPF) function for fitting experimentally measured relaxation curves of MoS2 memristors to quantitatively evaluate the relative dominance of STP and LTP effects. Such analytic results show that the absolute magnitudes of both STP and LTP effects in a memristor increase with increasing pulse frequency, pulse voltage (or amplitude), pulse duty cycle, and a total number of applied pulses, whereas the relative dominance levels of these two effects are typically not in a simple monotonous relationship with these pulse parameters. This indicates that the programming pulse parameters profoundly affect pulse-field-mediated charge trapping and S-vacancy migration processes which are responsible for the observed STP and LTP effects, respectively. This work provides a useful guideline for activating STP and LTP effects in emerging memristive devices based on 2D layered semiconductors, which could be deployed for making synaptic nodes in hardware-based artificial neural networks or neuromorphic sensory devices capable of sensing spatiotemporal events.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"17 1","pages":"24-29"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulse-Programmed Short-Term Plasticity and Long-Term Potentiation of MoS2 Memristive Devices\",\"authors\":\"S. Ki, Mingze Chen, Xiaogan Liang\",\"doi\":\"10.1109/MNANO.2023.3297105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-term plasticity (STP) and long-term potentiation (LTP) properties of neural synapses are crucial for developing complex neuromorphic systems and functions. In this work, we fabricated two-terminal memristors with multi-layer MoS2 channels and investigated pulse-programmed short-term and long-term synaptic responses. This work indicates that MoS2 memristors exhibit different magnitudes of STP and LTP effects under different pulse programming settings. Specifically, we utilized the paired-pulse facilitation (PPF) function for fitting experimentally measured relaxation curves of MoS2 memristors to quantitatively evaluate the relative dominance of STP and LTP effects. Such analytic results show that the absolute magnitudes of both STP and LTP effects in a memristor increase with increasing pulse frequency, pulse voltage (or amplitude), pulse duty cycle, and a total number of applied pulses, whereas the relative dominance levels of these two effects are typically not in a simple monotonous relationship with these pulse parameters. This indicates that the programming pulse parameters profoundly affect pulse-field-mediated charge trapping and S-vacancy migration processes which are responsible for the observed STP and LTP effects, respectively. This work provides a useful guideline for activating STP and LTP effects in emerging memristive devices based on 2D layered semiconductors, which could be deployed for making synaptic nodes in hardware-based artificial neural networks or neuromorphic sensory devices capable of sensing spatiotemporal events.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"17 1\",\"pages\":\"24-29\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNANO.2023.3297105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNANO.2023.3297105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Pulse-Programmed Short-Term Plasticity and Long-Term Potentiation of MoS2 Memristive Devices
Short-term plasticity (STP) and long-term potentiation (LTP) properties of neural synapses are crucial for developing complex neuromorphic systems and functions. In this work, we fabricated two-terminal memristors with multi-layer MoS2 channels and investigated pulse-programmed short-term and long-term synaptic responses. This work indicates that MoS2 memristors exhibit different magnitudes of STP and LTP effects under different pulse programming settings. Specifically, we utilized the paired-pulse facilitation (PPF) function for fitting experimentally measured relaxation curves of MoS2 memristors to quantitatively evaluate the relative dominance of STP and LTP effects. Such analytic results show that the absolute magnitudes of both STP and LTP effects in a memristor increase with increasing pulse frequency, pulse voltage (or amplitude), pulse duty cycle, and a total number of applied pulses, whereas the relative dominance levels of these two effects are typically not in a simple monotonous relationship with these pulse parameters. This indicates that the programming pulse parameters profoundly affect pulse-field-mediated charge trapping and S-vacancy migration processes which are responsible for the observed STP and LTP effects, respectively. This work provides a useful guideline for activating STP and LTP effects in emerging memristive devices based on 2D layered semiconductors, which could be deployed for making synaptic nodes in hardware-based artificial neural networks or neuromorphic sensory devices capable of sensing spatiotemporal events.
期刊介绍:
IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.