用于实时单声道语音去噪和去混响的频谱-时间子网

Feifei Xiong, Weiguang Chen, P. Wang, Xiaofei Li, Jinwei Feng
{"title":"用于实时单声道语音去噪和去混响的频谱-时间子网","authors":"Feifei Xiong, Weiguang Chen, P. Wang, Xiaofei Li, Jinwei Feng","doi":"10.21437/interspeech.2022-468","DOIUrl":null,"url":null,"abstract":"This paper presents an improved subband neural network applied to joint speech denoising and dereverberation for online single-channel scenarios. Preserving the advantages of subband model (SubNet) that processes each frequency band in-dependently and requires small amount of resources for good generalization, the proposed framework named STSubNet ex-ploits sufficient spectro-temporal receptive fields (STRFs) from speech spectrum via a two-dimensional convolution network cooperating with a bi-directional long short-term memory network across frequency bands, to further improve the neural network discrimination between desired speech component and undesired interference including noise and reverberation. The importance of this STRF extractor is analyzed by evaluating the contribution of individual module to the STSubNet performance for simultaneously denoising and dereverberation. Experimental results show that STSubNet outperforms other subband variants and achieves competitive performance compared to state-of-the-art models on two publicly benchmark test sets.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"931-935"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spectro-Temporal SubNet for Real-Time Monaural Speech Denoising and Dereverberation\",\"authors\":\"Feifei Xiong, Weiguang Chen, P. Wang, Xiaofei Li, Jinwei Feng\",\"doi\":\"10.21437/interspeech.2022-468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved subband neural network applied to joint speech denoising and dereverberation for online single-channel scenarios. Preserving the advantages of subband model (SubNet) that processes each frequency band in-dependently and requires small amount of resources for good generalization, the proposed framework named STSubNet ex-ploits sufficient spectro-temporal receptive fields (STRFs) from speech spectrum via a two-dimensional convolution network cooperating with a bi-directional long short-term memory network across frequency bands, to further improve the neural network discrimination between desired speech component and undesired interference including noise and reverberation. The importance of this STRF extractor is analyzed by evaluating the contribution of individual module to the STSubNet performance for simultaneously denoising and dereverberation. Experimental results show that STSubNet outperforms other subband variants and achieves competitive performance compared to state-of-the-art models on two publicly benchmark test sets.\",\"PeriodicalId\":73500,\"journal\":{\"name\":\"Interspeech\",\"volume\":\"1 1\",\"pages\":\"931-935\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interspeech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/interspeech.2022-468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种改进的子带神经网络,用于在线单通道场景的联合语音去噪和去混响。保留了子带模型(SubNet)的优点,该子带模型独立地处理每个频带并且需要少量的资源来实现良好的泛化,所提出的名为STSubNet的框架通过与跨频带的双向长短期记忆网络协作的二维卷积网络从语音频谱中释放出足够的频谱-时间感受野(STRFs),以进一步改进神经网络在期望的语音分量和包括噪声和混响的不期望干扰之间的区分。通过评估单个模块对STSubNet同时去噪和去混响性能的贡献,分析了该STRF提取器的重要性。实验结果表明,在两个公开的基准测试集上,与最先进的模型相比,STSubNet优于其他子带变体,并实现了有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectro-Temporal SubNet for Real-Time Monaural Speech Denoising and Dereverberation
This paper presents an improved subband neural network applied to joint speech denoising and dereverberation for online single-channel scenarios. Preserving the advantages of subband model (SubNet) that processes each frequency band in-dependently and requires small amount of resources for good generalization, the proposed framework named STSubNet ex-ploits sufficient spectro-temporal receptive fields (STRFs) from speech spectrum via a two-dimensional convolution network cooperating with a bi-directional long short-term memory network across frequency bands, to further improve the neural network discrimination between desired speech component and undesired interference including noise and reverberation. The importance of this STRF extractor is analyzed by evaluating the contribution of individual module to the STSubNet performance for simultaneously denoising and dereverberation. Experimental results show that STSubNet outperforms other subband variants and achieves competitive performance compared to state-of-the-art models on two publicly benchmark test sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1