{"title":"带有dna链接的复制子的倒绕模型","authors":"A. A. Mohamad, T. Yashiro","doi":"10.11145/j.biomath.2020.01.047","DOIUrl":null,"url":null,"abstract":"A double strand DNA has a double helical structure and it is modeled by a thin long twisted ribbon fixed at the both ends. A DNA-link is a topological model of such a DNA segment in the nuclear of a eukaryotic cell. In the cell cycle, the DNA is replicated and distributed into new cells. The complicated replication process follows the semi-conservative scheme in which each backbone string is preserved in the replicated DNA. This is interpreted in terms of splitting process of the DNA-link. In order to split the DNA-link, unknotting operations are required. This paper presents a recursive unknotting operations, which efficiently reduce the number of twistings.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A rewinding model for replicons with DNA-links\",\"authors\":\"A. A. Mohamad, T. Yashiro\",\"doi\":\"10.11145/j.biomath.2020.01.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A double strand DNA has a double helical structure and it is modeled by a thin long twisted ribbon fixed at the both ends. A DNA-link is a topological model of such a DNA segment in the nuclear of a eukaryotic cell. In the cell cycle, the DNA is replicated and distributed into new cells. The complicated replication process follows the semi-conservative scheme in which each backbone string is preserved in the replicated DNA. This is interpreted in terms of splitting process of the DNA-link. In order to split the DNA-link, unknotting operations are required. This paper presents a recursive unknotting operations, which efficiently reduce the number of twistings.\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/j.biomath.2020.01.047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/j.biomath.2020.01.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A double strand DNA has a double helical structure and it is modeled by a thin long twisted ribbon fixed at the both ends. A DNA-link is a topological model of such a DNA segment in the nuclear of a eukaryotic cell. In the cell cycle, the DNA is replicated and distributed into new cells. The complicated replication process follows the semi-conservative scheme in which each backbone string is preserved in the replicated DNA. This is interpreted in terms of splitting process of the DNA-link. In order to split the DNA-link, unknotting operations are required. This paper presents a recursive unknotting operations, which efficiently reduce the number of twistings.