一种基于信息论和迁移学习的多类运动图像解码新方案

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IET Signal Processing Pub Date : 2023-05-03 DOI:10.1049/sil2.12222
Jaber Parchami, Ghazaleh Sarbishaei
{"title":"一种基于信息论和迁移学习的多类运动图像解码新方案","authors":"Jaber Parchami,&nbsp;Ghazaleh Sarbishaei","doi":"10.1049/sil2.12222","DOIUrl":null,"url":null,"abstract":"<p>The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal-to-noise ratio, non-stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi-class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR-FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4-class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state-of-the-art methods.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12222","citationCount":"0","resultStr":"{\"title\":\"A novel scheme based on information theory and transfer learning for multi classes motor imagery decoding\",\"authors\":\"Jaber Parchami,&nbsp;Ghazaleh Sarbishaei\",\"doi\":\"10.1049/sil2.12222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal-to-noise ratio, non-stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi-class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR-FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4-class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state-of-the-art methods.</p>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12222\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

脑电信号的低信噪比、非平稳性和高度的主体依赖性是基于脑电信号对运动图像任务进行分类的主要挑战。在本研究中,提出了一种运动图像信号的多级解码框架。该框架基于信息论和混合深度学习以及迁移学习。本研究采用基于对称Kullback-Leibler散度的OVR-FBDiv方法对不同类别的特征进行区分和突出。然后,使用mRMR算法从对称KL散度滤波器中选择最显著的特征;最后,利用CNN和LSTM组成的混合深度神经网络,结合迁移学习技术学习脑电信号的时空特征,克服脑电信号的主体依赖问题。该方法对BCI大赛IV数据集2a上的4类运动图像数据进行分类,Kappa均值为0.84。同时,将该方法与其他先进方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel scheme based on information theory and transfer learning for multi classes motor imagery decoding

The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal-to-noise ratio, non-stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi-class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR-FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4-class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
期刊最新文献
Human-Centered UAV–MAV Teaming in Adversarial Scenarios via Target-Aware Intention Prediction and Reinforcement Learning Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection Deep Reinforcement Learning Explores EH-RIS for Spectrum-Efficient Drone Communication in 6G An Improved Lightweight YOLO Algorithm for Recognition of GPS Interference Signals in Civil Aviation Support Vector Machines Based Mutual Interference Mitigation for Millimeter-Wave Radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1