非均匀部分间隙变几何涡轮叶尖间隙流动的数值研究

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE International Journal of Turbo & Jet-Engines Pub Date : 2023-08-08 DOI:10.1515/tjj-2023-0063
Yueqi Liu, Shaowen Chen, S. Wang
{"title":"非均匀部分间隙变几何涡轮叶尖间隙流动的数值研究","authors":"Yueqi Liu, Shaowen Chen, S. Wang","doi":"10.1515/tjj-2023-0063","DOIUrl":null,"url":null,"abstract":"Abstract In variable geometry turbine vanes, tip clearance height and shape vary with the rotation of the vane, which affect the aerodynamic performance significantly. However, these issues are rarely considered in published studies. The current paper investigated the flow field features of transonic variable geometry turbine vanes with non-uniform partial clearance induced by the vane rotating. The results show that: The influence of guide vane rotation on the clearance height and its distribution cannot be ignored. At the same turning angle, the maximum clearance difference is up to 0.79 mm (0.8 % vane height). The height and shape variation of the non-uniform clearance leads to the change in the leakage flow rate, secondary flow structure, and aerodynamic loss of the variable guide vane. Under the combined effect of pressure difference on both sides of the clearance, axial and circumferential non-uniformity of clearance height, the total pressure loss coefficient is up to 9.44 % when the turning angle is −10°. The effect of the pivot on the clearance flow was also analyzed. The pivot increases the pressure in the gap flow field and reduces leakage flow velocity. However, a backflow region appears at the suction side of the pivot, which increases the aerodynamic losses.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of tip clearance flow in a variable geometry turbine with non-uniform partial clearance\",\"authors\":\"Yueqi Liu, Shaowen Chen, S. Wang\",\"doi\":\"10.1515/tjj-2023-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In variable geometry turbine vanes, tip clearance height and shape vary with the rotation of the vane, which affect the aerodynamic performance significantly. However, these issues are rarely considered in published studies. The current paper investigated the flow field features of transonic variable geometry turbine vanes with non-uniform partial clearance induced by the vane rotating. The results show that: The influence of guide vane rotation on the clearance height and its distribution cannot be ignored. At the same turning angle, the maximum clearance difference is up to 0.79 mm (0.8 % vane height). The height and shape variation of the non-uniform clearance leads to the change in the leakage flow rate, secondary flow structure, and aerodynamic loss of the variable guide vane. Under the combined effect of pressure difference on both sides of the clearance, axial and circumferential non-uniformity of clearance height, the total pressure loss coefficient is up to 9.44 % when the turning angle is −10°. The effect of the pivot on the clearance flow was also analyzed. The pivot increases the pressure in the gap flow field and reduces leakage flow velocity. However, a backflow region appears at the suction side of the pivot, which increases the aerodynamic losses.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2023-0063\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

摘要在变几何涡轮叶片中,叶尖间隙高度和形状随着叶片的旋转而变化,这对气动性能有很大影响。然而,在已发表的研究中很少考虑这些问题。本文研究了跨声速变几何涡轮叶片旋转引起的局部间隙不均匀的流场特征。结果表明:导叶旋转对间隙高度及其分布的影响不容忽视。在相同的转弯角度下,最大间隙差可达0.79 毫米(0.8 % 叶片高度)。非均匀间隙的高度和形状变化导致可变导叶的泄漏流量、二次流结构和气动损失发生变化。在间隙两侧压差、间隙高度轴向和周向不均匀的共同作用下,总压损系数高达9.44 % 当转弯角度为−10°时。还分析了枢轴对间隙流动的影响。枢轴增加了间隙流场中的压力并降低了泄漏流速。然而,在枢轴的吸入侧出现回流区域,这增加了空气动力学损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of tip clearance flow in a variable geometry turbine with non-uniform partial clearance
Abstract In variable geometry turbine vanes, tip clearance height and shape vary with the rotation of the vane, which affect the aerodynamic performance significantly. However, these issues are rarely considered in published studies. The current paper investigated the flow field features of transonic variable geometry turbine vanes with non-uniform partial clearance induced by the vane rotating. The results show that: The influence of guide vane rotation on the clearance height and its distribution cannot be ignored. At the same turning angle, the maximum clearance difference is up to 0.79 mm (0.8 % vane height). The height and shape variation of the non-uniform clearance leads to the change in the leakage flow rate, secondary flow structure, and aerodynamic loss of the variable guide vane. Under the combined effect of pressure difference on both sides of the clearance, axial and circumferential non-uniformity of clearance height, the total pressure loss coefficient is up to 9.44 % when the turning angle is −10°. The effect of the pivot on the clearance flow was also analyzed. The pivot increases the pressure in the gap flow field and reduces leakage flow velocity. However, a backflow region appears at the suction side of the pivot, which increases the aerodynamic losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
期刊最新文献
The International Journal of Turbo and Jet Engines Research on high-bandwidth linear active disturbance rejection control method for variable speed turboshaft engine Influence of inlet structure on combustion flow structure in magnesium powder fueled water ramjet engine C conjugate heat transfer simulation of swirl internal cooling on blade leading edge Effect of velocity ratio and Mach number on thin lip coaxial jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1