{"title":"量子破裂的时间尺度","authors":"Marco Michel, Sebastian Zell","doi":"10.1002/prop.202300163","DOIUrl":null,"url":null,"abstract":"<p>Due to the inevitable existence of quantum effects, a classical description generically breaks down after a finite quantum break-time <math>\n <semantics>\n <msub>\n <mi>t</mi>\n <mi>q</mi>\n </msub>\n <annotation>$t_q$</annotation>\n </semantics></math>. We aim to find criteria for determining <math>\n <semantics>\n <msub>\n <mi>t</mi>\n <mi>q</mi>\n </msub>\n <annotation>$t_q$</annotation>\n </semantics></math>. To this end, we construct a new prototype model that features numerous dynamically accessible quantum modes. Using explicit numerical time evolution, we establish how <math>\n <semantics>\n <msub>\n <mi>t</mi>\n <mi>q</mi>\n </msub>\n <annotation>$t_q$</annotation>\n </semantics></math> depends on the parameters of the system such as its particle number <i>N</i>. The presence of a classical instability leads to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>q</mi>\n </msub>\n <mo>∼</mo>\n <mi>ln</mi>\n <mi>N</mi>\n </mrow>\n <annotation>$t_q\\sim \\ln N$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>q</mi>\n </msub>\n <mo>∼</mo>\n <msqrt>\n <mi>N</mi>\n </msqrt>\n </mrow>\n <annotation>$t_q\\sim \\sqrt {N}$</annotation>\n </semantics></math>. In the stable case, we observe <math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>q</mi>\n </msub>\n <mo>∼</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$t_q\\sim N$</annotation>\n </semantics></math>, although full quantum breaking may not take place at all. We find that the different regimes merge smoothly with <math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>q</mi>\n </msub>\n <mo>∼</mo>\n <msup>\n <mi>N</mi>\n <mi>γ</mi>\n </msup>\n </mrow>\n <annotation>$t_q\\sim N^\\gamma$</annotation>\n </semantics></math> (<math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>γ</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0<\\gamma <1$</annotation>\n </semantics></math>). As an outlook, we point out possibilities for transferring our results to black holes and expanding spacetimes.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"71 12","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300163","citationCount":"1","resultStr":"{\"title\":\"The Timescales of Quantum Breaking\",\"authors\":\"Marco Michel, Sebastian Zell\",\"doi\":\"10.1002/prop.202300163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the inevitable existence of quantum effects, a classical description generically breaks down after a finite quantum break-time <math>\\n <semantics>\\n <msub>\\n <mi>t</mi>\\n <mi>q</mi>\\n </msub>\\n <annotation>$t_q$</annotation>\\n </semantics></math>. We aim to find criteria for determining <math>\\n <semantics>\\n <msub>\\n <mi>t</mi>\\n <mi>q</mi>\\n </msub>\\n <annotation>$t_q$</annotation>\\n </semantics></math>. To this end, we construct a new prototype model that features numerous dynamically accessible quantum modes. Using explicit numerical time evolution, we establish how <math>\\n <semantics>\\n <msub>\\n <mi>t</mi>\\n <mi>q</mi>\\n </msub>\\n <annotation>$t_q$</annotation>\\n </semantics></math> depends on the parameters of the system such as its particle number <i>N</i>. The presence of a classical instability leads to <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>t</mi>\\n <mi>q</mi>\\n </msub>\\n <mo>∼</mo>\\n <mi>ln</mi>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$t_q\\\\sim \\\\ln N$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>t</mi>\\n <mi>q</mi>\\n </msub>\\n <mo>∼</mo>\\n <msqrt>\\n <mi>N</mi>\\n </msqrt>\\n </mrow>\\n <annotation>$t_q\\\\sim \\\\sqrt {N}$</annotation>\\n </semantics></math>. In the stable case, we observe <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>t</mi>\\n <mi>q</mi>\\n </msub>\\n <mo>∼</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$t_q\\\\sim N$</annotation>\\n </semantics></math>, although full quantum breaking may not take place at all. We find that the different regimes merge smoothly with <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>t</mi>\\n <mi>q</mi>\\n </msub>\\n <mo>∼</mo>\\n <msup>\\n <mi>N</mi>\\n <mi>γ</mi>\\n </msup>\\n </mrow>\\n <annotation>$t_q\\\\sim N^\\\\gamma$</annotation>\\n </semantics></math> (<math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo><</mo>\\n <mi>γ</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0<\\\\gamma <1$</annotation>\\n </semantics></math>). As an outlook, we point out possibilities for transferring our results to black holes and expanding spacetimes.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"71 12\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300163\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300163\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300163","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Due to the inevitable existence of quantum effects, a classical description generically breaks down after a finite quantum break-time . We aim to find criteria for determining . To this end, we construct a new prototype model that features numerous dynamically accessible quantum modes. Using explicit numerical time evolution, we establish how depends on the parameters of the system such as its particle number N. The presence of a classical instability leads to or . In the stable case, we observe , although full quantum breaking may not take place at all. We find that the different regimes merge smoothly with (). As an outlook, we point out possibilities for transferring our results to black holes and expanding spacetimes.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.