首页 > 最新文献

Fortschritte Der Physik-Progress of Physics最新文献

英文 中文
Issue Information: Fortschritte der Physik 1 / 2026 物理进展1 / 2026
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-01-09 DOI: 10.1002/prop.70070
{"title":"Issue Information: Fortschritte der Physik 1 / 2026","authors":"","doi":"10.1002/prop.70070","DOIUrl":"https://doi.org/10.1002/prop.70070","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"74 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145941786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Fortschritte der Physik 12 / 2025 问题信息:物理进展12 / 2025
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-12-17 DOI: 10.1002/prop.70064
{"title":"Issue Information: Fortschritte der Physik 12 / 2025","authors":"","doi":"10.1002/prop.70064","DOIUrl":"https://doi.org/10.1002/prop.70064","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T c $T_c$ , Photoproduction, Paramagnetic Anisotropic Plasma, IR Log-Gravitational-DBI Renormalization, and G 2 $G_2$ -Structure Induced (Almost) Contact 3-Structures in Hot Strongly Magnetic MQCD at Intermediate Coupling tc $T_c$,光产生,顺磁各向异性等离子体,IR log -重力- dbi重整化,以及G_2$ G_2$ -结构诱导(几乎)接触-结构在热强磁MQCD中
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-28 DOI: 10.1002/prop.70044
Shivam Singh Kushwah, Aalok Misra
<p>After obtaining the gauge fields that can be supported on the world-volume of flavor <span></span><math> <semantics> <mrow> <mi>D</mi> <mn>6</mn> </mrow> <annotation>$D6$</annotation> </semantics></math>-branes in the type IIA dual of thermal QCD-like theories at high temperatures and intermediate coupling (the latter incorporated via the inclusion of <span></span><math> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>R</mi> <mn>4</mn> </msup> <mo>)</mo> </mrow> <annotation>${cal O}(R^4)$</annotation> </semantics></math> corrections in its <span></span><math> <semantics> <mi>M</mi> <annotation>${cal M}$</annotation> </semantics></math>-theory uplift), combining with the results of Yadav et al., it is shown that the deconfinement temperature <span></span><math> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> <annotation>$T_c$</annotation> </semantics></math> decreases in the presence of a strong magnetic field as in lattice QCD. By working out gauge-invariant fluctuations about the aforementioned world-volume gauge fields, in the (absence and) presence of a strong magnetic field (<span></span><math> <semantics> <mrow> <mi>B</mi> <mo>></mo> <msup> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <annotation>$B>(T_c(B=0))^2$</annotation> </semantics></math> in <span></span><math> <semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>1</mn> </mrow> <annotation>$e=1$</annotation> </semantics></math>-units), we obtain the <span></span><math> <semantics> <mrow> <mfrac> <mi>χ</mi> <mrow> <msup> <mi>N</mi> <mn>2</mn> </msup>
在高温和中间耦合(后者通过加入O (r4)而结合)的热qcd类理论的IIA型对偶中,获得了可支持在世界体积的风味d6 $D6$ -膜上的规范场) ${cal O}(R^4)$修正其M ${cal M}$ -理论隆升),结合Yadav等人的结果表明,在晶格QCD中,在强磁场存在下,解晶态温度T c $T_c$降低。通过计算出上述世界-体积规范场的规范不变波动,(B &gt; (T c (B = 0)))) 2 $B&gt;(T_c(B=0))^2$ (e = 1 $e=1$ -单位),我们得到χ n2 T 2 ω - ω $frac{chi }{N^2 T^2omega }-omega$变化(χ $chi$为反应面光子偏振的光谱函数,N $N$为类热qcd理论的IIB型对偶中彩色d3 $D3$膜的数目。我们进一步得到了一个很好的一致性,例如,在测量超重力中,自下而上的全息各向异性背景。在世界体积规范场的视界上实现Dirichlet边界条件,我们还在EoS水平上证明了全息对偶原则上可以对应于T c $T_c$以上的几种情况。这些包括(i)各向异性等离子体在宇宙冷却时通过平滑交叉过渡到外来物质(在我们的设置中禁止相反的情况),(ii)稳定的虫洞(我们还注意到r = 0 $r=0$附近的已分解的concon折叠有点像半埃利斯虫洞),以及(iii)顺磁压力/能量各向异性等离子体。鉴于T c $T_c$以上的QGP预计是顺磁性的,第三种可能性似乎是首选的。将TOV方程推广到包括角质量/压力/能量分布,我们在G $G$中显示一阶,各向异性等离子体不可能导致致密恒星的形成。在此过程中,我们证明了DBI动作的IR重整化需要一个里奇张量的边界对数行列式计数器项。我们进一步推测(i)在没有磁场的情况下,由接收O (R 4) ${cal O}(R^4)$校正的世界-体积规范场波动确定的光产生谱函数、声速(以及体粘度)等量,如果复化,包括非分析复杂的仪表耦合依赖,并对应于接触3-结构;(ii)量,如压力/自由e 在强磁场存在下,由非O (R 4)$ {cal O}(R^4)$校正的世界体积规范场确定,如果复化,则在复化规范耦合中是解析的,并对应于几乎接触3-结构(AC3S);两者都是由M ${cal M}$理论圆的封闭七倍曲积和non-Kähler六倍曲积的g2 $G_2$结构引起的,其中六倍曲是具有非爱因斯坦变形t1的热圆的曲积,1 $T^{1,1}$,以及(iii)在与AC3S和C3S相关的参数空间中缺乏N$ N$ -路径连性,因此对应于规范场波动不可能是有限的,并且在零瞬时扇区中,O (R 4)$ {cal O}(R^4)$非重整化规范域产生O (R 4)$ {calO}(R^4)$ -修正的量规波动。
{"title":"T\u0000 c\u0000 \u0000 $T_c$\u0000 , Photoproduction, Paramagnetic Anisotropic Plasma, IR Log-Gravitational-DBI Renormalization, and \u0000 \u0000 \u0000 G\u0000 2\u0000 \u0000 $G_2$\u0000 -Structure Induced (Almost) Contact 3-Structures in Hot Strongly Magnetic MQCD at Intermediate Coupling","authors":"Shivam Singh Kushwah,&nbsp;Aalok Misra","doi":"10.1002/prop.70044","DOIUrl":"https://doi.org/10.1002/prop.70044","url":null,"abstract":"&lt;p&gt;After obtaining the gauge fields that can be supported on the world-volume of flavor &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mn&gt;6&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$D6$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-branes in the type IIA dual of thermal QCD-like theories at high temperatures and intermediate coupling (the latter incorporated via the inclusion of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${cal O}(R^4)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; corrections in its &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;${cal M}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-theory uplift), combining with the results of Yadav et al., it is shown that the deconfinement temperature &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$T_c$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; decreases in the presence of a strong magnetic field as in lattice QCD. By working out gauge-invariant fluctuations about the aforementioned world-volume gauge fields, in the (absence and) presence of a strong magnetic field (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$B&gt;(T_c(B=0))^2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$e=1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-units), we obtain the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 ","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective Temperature of the FRW Universe FRW宇宙的有效温度
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-24 DOI: 10.1002/prop.70052
Shi-Bei Kong

In this paper, a new definition of temperature is proposed for the FRW(Friedmann–Robertson–Walker) universe, i.e., the effective temperature Teff:=dE/dS$T_{eff}:=mathrm{d}E/mathrm{d}S$, where E$E$ is the energy and S$S$ is the entropy of the FRW universe. Based on this definition, the effective temperature is derived for the N$N$-dimensional FRW universe in Einstein gravity, Gauss–Bonnet gravity, and Lovelock gravity. For the 4-dimensional FRW universe, the effective temperature is found to be Teff=1/(4πRA)$T_{eff}=1/(4pi R_A)$, which is exactly the same form with the Hawking temperature of the Schwarzschild black hole. In higher-dimensional FRW universe, the form of the effective temperature depends on the choices of the gravitational theories or the corresponding coupling constants. The free energy of the FRW universe in the three theories of gravity is also obtained.

本文对FRW(friedman - robertson - walker)宇宙提出了一个新的温度定义,即有效温度为:= d E/ d S$ T_{eff}:=mathrm{d}E/mathrm{d}S$,其中E$ E$为FRW宇宙的能量,S$ S$为FRW宇宙的熵。基于这一定义,推导了爱因斯坦引力、高斯-邦纳引力和洛夫洛克引力下N$ N$维FRW宇宙的有效温度。对于四维FRW宇宙,有效温度为T ff = 1 / (4 π R A)$T_{eff}=1/(4pi R_A)$,这与史瓦西黑洞的霍金温度完全相同。在高维FRW宇宙中,有效温度的形式取决于引力理论或相应耦合常数的选择。得到了三种引力理论中FRW宇宙的自由能。
{"title":"Effective Temperature of the FRW Universe","authors":"Shi-Bei Kong","doi":"10.1002/prop.70052","DOIUrl":"https://doi.org/10.1002/prop.70052","url":null,"abstract":"<p>In this paper, a new definition of temperature is proposed for the FRW(Friedmann–Robertson–Walker) universe, i.e., the effective temperature <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mi>f</mi>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <mo>=</mo>\u0000 <mi>d</mi>\u0000 <mi>E</mi>\u0000 <mo>/</mo>\u0000 <mi>d</mi>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation>$T_{eff}:=mathrm{d}E/mathrm{d}S$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> is the energy and <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> is the entropy of the FRW universe. Based on this definition, the effective temperature is derived for the <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math>-dimensional FRW universe in Einstein gravity, Gauss–Bonnet gravity, and Lovelock gravity. For the 4-dimensional FRW universe, the effective temperature is found to be <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mi>f</mi>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>4</mn>\u0000 <mi>π</mi>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>A</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$T_{eff}=1/(4pi R_A)$</annotation>\u0000 </semantics></math>, which is exactly the same form with the Hawking temperature of the Schwarzschild black hole. In higher-dimensional FRW universe, the form of the effective temperature depends on the choices of the gravitational theories or the corresponding coupling constants. The free energy of the FRW universe in the three theories of gravity is also obtained.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observational Analysis of Exponentially Decaying Viscous Cosmology in f ( Q , C ) $f(Q,C)$ Gravity f(Q,C)$ f(Q,C)$引力中指数衰减粘性宇宙学的观测分析
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-21 DOI: 10.1002/prop.70054
Amit Samaddar, S. Surendra Singh
<p>In this work, the effects of viscosity in <span></span><math> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>C</mi> <mo>)</mo> </mrow> <annotation>$f(Q,C)$</annotation> </semantics></math> gravity are investigated by considering the model <span></span><math> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>C</mi> <mo>)</mo> <mo>=</mo> <mi>α</mi> <mi>Q</mi> <mo>+</mo> <mi>γ</mi> <mi>C</mi> </mrow> <annotation>$f(Q,C)=alpha Q+gamma C$</annotation> </semantics></math> with an new exponential bulk viscosity of the form <span></span><math> <semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <msub> <mi>ζ</mi> <mn>0</mn> </msub> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>β</mi> <mi>H</mi> </mrow> </msup> </mrow> <annotation>$zeta = zeta _0 e^{-beta H}$</annotation> </semantics></math>. The Hubble parameter is derived in terms of redshift <span></span><math> <semantics> <mi>z</mi> <annotation>$z$</annotation> </semantics></math> and constrain the model parameters using observational datasets, including CC, DESI DR2 BAO and Pantheon+ datasets, via the MCMC approach. The best-fit values of the parameters are obtained and the evolution of cosmological parameters is analyzed. The results indicate a transition from a decelerated to an accelerated expansion phase, with the present deceleration parameter value <span></span><math> <semantics> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.3699</mn> </mrow> <annotation>$q_{0} = -0.3699$</annotation> </semantics></math> for the joint dataset. The equation of state parameter approaches <span></span><math> <semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <annotation>$-1$</annotation> </semantics></math> at late times and the SEC is violated, supporting cosmic acceleration. The statefinder analysis shows that the
在这项工作中,通过考虑f (Q, C) $f(Q,C)$重力模型,研究了粘度对f (Q, C) 重力的影响。C) = α Q + γ C $f(Q,C)=alpha Q+gamma C$具有新的指数体粘度形式ζ = ζ 0 e−β H $zeta = zeta _0 e^{-beta H}$。哈勃参数是根据红移z $z$导出的,并通过MCMC方法使用观测数据集(包括CC, DESI DR2 BAO和Pantheon+数据集)约束模型参数。得到了参数的最佳拟合值,并分析了宇宙学参数的演化。结果表明,联合数据集从减速扩展阶段过渡到加速扩展阶段,目前减速参数值q 0 =−0.3699 $q_{0} = -0.3699$。状态参数方程在后期接近−1 $-1$,并且违反了SEC,支持宇宙加速。寻态器分析表明,该模型从Chaplygin气相到quintessence,最终收敛到Λ CDM $Lambda{rm CDM}$。此外,粘度的影响也进行了研究,表明它的影响在早期宇宙中是显著的,但随着时间的推移而减弱。这些发现表明,粘度在f (Q, C) $f(Q,C)$重力下的宇宙演化中起着至关重要的作用,为后期加速提供了一个可行的替代框架。
{"title":"Observational Analysis of Exponentially Decaying Viscous Cosmology in \u0000 \u0000 \u0000 f\u0000 (\u0000 Q\u0000 ,\u0000 C\u0000 )\u0000 \u0000 $f(Q,C)$\u0000 Gravity","authors":"Amit Samaddar,&nbsp;S. Surendra Singh","doi":"10.1002/prop.70054","DOIUrl":"https://doi.org/10.1002/prop.70054","url":null,"abstract":"&lt;p&gt;In this work, the effects of viscosity in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f(Q,C)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; gravity are investigated by considering the model &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f(Q,C)=alpha Q+gamma C$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with an new exponential bulk viscosity of the form &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ζ&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ζ&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$zeta = zeta _0 e^{-beta H}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The Hubble parameter is derived in terms of redshift &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;annotation&gt;$z$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and constrain the model parameters using observational datasets, including CC, DESI DR2 BAO and Pantheon+ datasets, via the MCMC approach. The best-fit values of the parameters are obtained and the evolution of cosmological parameters is analyzed. The results indicate a transition from a decelerated to an accelerated expansion phase, with the present deceleration parameter value &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;0.3699&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$q_{0} = -0.3699$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for the joint dataset. The equation of state parameter approaches &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$-1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; at late times and the SEC is violated, supporting cosmic acceleration. The statefinder analysis shows that the","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"74 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145941715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Dark-Energy Enigma 关于暗能量之谜
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-19 DOI: 10.1002/prop.70051
Ali H. Chamseddine, Jürg Fröhlich

A model is presented that provides an explanation for the presence of (Dark Matter and) Dark Energy in the universe. A key idea is to express the volume form of the Lorentzian metric on space–time in terms of a positive function of a new scalar field multiplying a certain four-form given by the wedge product of the differential of the mimetic scalar field and a certain closed three-form. An ansatz for this three-form related to one commonly used to determine the winding number of a map from a three-dimensional hypersurface to a three-sphere is discussed. An action functional depending on the space–time metric, the new scalar field, the mimetic scalar and the three-form is proposed, and the field equations are derived. Special solutions of these equations for a Friedmann–Lemaître universe are presented.

提出了一个模型,为宇宙中(暗物质和)暗能量的存在提供了解释。一个关键思想是将时空上洛伦兹度规的体积形式表示为一个新的标量场的正函数乘以一个由模拟标量场的微分与一个封闭的三形式的楔形积给出的四形式。本文讨论了这种三形式的一种解释,这种解释与通常用于确定三维超曲面到三球面映射的圈数的解释有关。提出了依赖于时空度量、新标量场、拟标量场和三形式的作用泛函,并推导了场方程。给出了一类friedman - lema宇宙下这些方程的特解。
{"title":"On the Dark-Energy Enigma","authors":"Ali H. Chamseddine,&nbsp;Jürg Fröhlich","doi":"10.1002/prop.70051","DOIUrl":"https://doi.org/10.1002/prop.70051","url":null,"abstract":"<p>A model is presented that provides an explanation for the presence of (Dark Matter and) Dark Energy in the universe. A key idea is to express the volume form of the Lorentzian metric on space–time in terms of a positive function of a new scalar field multiplying a certain four-form given by the wedge product of the differential of the mimetic scalar field and a certain closed three-form. An ansatz for this three-form related to one commonly used to determine the winding number of a map from a three-dimensional hypersurface to a three-sphere is discussed. An action functional depending on the space–time metric, the new scalar field, the mimetic scalar and the three-form is proposed, and the field equations are derived. Special solutions of these equations for a Friedmann–Lemaître universe are presented.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145766352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Perturbative Origin of Electroweak Scale via Higgs-Portal: Dyson–Schwinger in Conformally Invariant Scalar Sector 通过Higgs-Portal的电弱尺度的非微扰起源:共形不变标量扇区中的Dyson-Schwinger
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-19 DOI: 10.1002/prop.70050
Marco Frasca, Anish Ghoshal, Nobuchika Okada

A conformally extended Standard Model with a hidden scalar ϕ$phi$ is investigated. It is shown that due to non-perturbative dynamics in the hidden sector, ϕ$phi$ develops a vacuum expectation value (vev) in the form of a mass gap which triggers the electroweak symmetry breaking (EWSB) and dynamically generates the SM Higgs boson mass. To estimate the non-perturbatively generated mass scale, a hierarchy of Dyson–Schwinger equations is solved in form of partial differential equations using the exact solution known via a novel technique developed by Bender, Milton, and Savage. A Jacobi Elliptic function is employed as exact background solution and show that the mass gap that arises in the hidden sector can be transmuted to the EW sector, expressed in terms of Higgs-portal mixed quartic coupling β$beta$ and self interaction quartic coupling λϕ$lambda _{phi }$ of ϕ$phi$. The suitable parameter space where the observed SM Higgs boson can be successfully generated is identified. Finally, the idea of non-perturbative EW scale generation can serve as a new starting point for better realistic model building in the context of resolving the hierarchy problem in the Standard Model is discussed.

研究了一个包含隐藏标量φ $phi$的共形扩展标准模型。研究表明,由于隐藏扇区中的非摄动动力学,ϕ $phi$以质量间隙的形式产生真空期望值(vev),从而触发电弱对称破缺(EWSB)并动态产生SM希格斯玻色子质量。为了估计非扰动产生的质量尺度,Dyson-Schwinger方程的层次结构以偏微分方程的形式求解,使用由Bender, Milton和Savage开发的新技术已知的精确解。利用Jacobi椭圆函数作为精确的背景解,证明了隐藏扇区产生的质量间隙可以转化为电子束扇区。表示为Higgs-portal混合四次耦合β $beta$和自相互作用四次耦合λ ϕ $lambda _{phi }$的ϕ $phi$。确定了能成功产生观测到的SM希格斯玻色子的合适参数空间。最后,在解决标准模型中的层次问题的背景下,讨论了非摄动电子战尺度生成的思想,为更好地构建真实模型提供了新的起点。
{"title":"Non-Perturbative Origin of Electroweak Scale via Higgs-Portal: Dyson–Schwinger in Conformally Invariant Scalar Sector","authors":"Marco Frasca,&nbsp;Anish Ghoshal,&nbsp;Nobuchika Okada","doi":"10.1002/prop.70050","DOIUrl":"https://doi.org/10.1002/prop.70050","url":null,"abstract":"<p>A conformally extended Standard Model with a hidden scalar <span></span><math>\u0000 <semantics>\u0000 <mi>ϕ</mi>\u0000 <annotation>$phi$</annotation>\u0000 </semantics></math> is investigated. It is shown that due to non-perturbative dynamics in the hidden sector, <span></span><math>\u0000 <semantics>\u0000 <mi>ϕ</mi>\u0000 <annotation>$phi$</annotation>\u0000 </semantics></math> develops a vacuum expectation value (vev) in the form of a mass gap which triggers the electroweak symmetry breaking (EWSB) and dynamically generates the SM Higgs boson mass. To estimate the non-perturbatively generated mass scale, a hierarchy of Dyson–Schwinger equations is solved in form of partial differential equations using the exact solution known via a novel technique developed by Bender, Milton, and Savage. A Jacobi Elliptic function is employed as exact background solution and show that the mass gap that arises in the hidden sector can be transmuted to the EW sector, expressed in terms of Higgs-portal mixed quartic coupling <span></span><math>\u0000 <semantics>\u0000 <mi>β</mi>\u0000 <annotation>$beta$</annotation>\u0000 </semantics></math> and self interaction quartic coupling <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>λ</mi>\u0000 <mi>ϕ</mi>\u0000 </msub>\u0000 <annotation>$lambda _{phi }$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mi>ϕ</mi>\u0000 <annotation>$phi$</annotation>\u0000 </semantics></math>. The suitable parameter space where the observed SM Higgs boson can be successfully generated is identified. Finally, the idea of non-perturbative EW scale generation can serve as a new starting point for better realistic model building in the context of resolving the hierarchy problem in the Standard Model is discussed.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on the RG-Flow in Open String Field Theory 关于开弦场理论中rg流的几点评述
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-18 DOI: 10.1002/prop.70045
Julius Hristov

We define a metric G$G$ on the KBc-subalgebra modulo gauge and describe the worldsheet RG-flow as the gradient flow of the action of cubic open string field theory, where the flow lines are kink-solitons. In particular, for a constant tachyon the gradient flow equations are equivalent to the RG-equations. Additionally, a more general family of gradient flow lines is presented, which describes the RG-flow from the conformal manifold of the D-brane under tachyon condensation. We also derive the stability operator of our solution and show that the zero-modes reflect the invariance of the flow under such marginal perturbations. In fact, the beta function is colinear to our solution such that it describes geodesics from the conformal manifold to the tachyon vacuum with respect to G$G$.

我们在kbc -子代数模规范上定义了一个度量G$ G$,并将世界表RG-flow描述为三次开弦场论作用的梯度流,其中流线为扭转孤子。特别地,对于常数速子,梯度流动方程等价于rg方程。此外,我们还提出了一个更一般的梯度流谱族,它描述了速子凝聚下d膜共形流形的rg流。我们还导出了解的稳定性算子,并证明了零模态反映了在这种边缘扰动下流动的不变性。事实上,函数与我们的解共线,使得它描述了从共形流形到关于G$ G$的速子真空的测地线。
{"title":"Comments on the RG-Flow in Open String Field Theory","authors":"Julius Hristov","doi":"10.1002/prop.70045","DOIUrl":"https://doi.org/10.1002/prop.70045","url":null,"abstract":"<p>We define a metric <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> on the KBc-subalgebra modulo gauge and describe the worldsheet RG-flow as the gradient flow of the action of cubic open string field theory, where the flow lines are kink-solitons. In particular, for a constant tachyon the gradient flow equations are equivalent to the RG-equations. Additionally, a more general family of gradient flow lines is presented, which describes the RG-flow from the conformal manifold of the D-brane under tachyon condensation. We also derive the stability operator of our solution and show that the zero-modes reflect the invariance of the flow under such marginal perturbations. In fact, the beta function is colinear to our solution such that it describes geodesics from the conformal manifold to the tachyon vacuum with respect to <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145766347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Fortschritte der Physik 11 / 2025 问题信息:物理进展11 / 2025
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-10 DOI: 10.1002/prop.70053
{"title":"Issue Information: Fortschritte der Physik 11 / 2025","authors":"","doi":"10.1002/prop.70053","DOIUrl":"https://doi.org/10.1002/prop.70053","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 11","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cardy-Like Expression For Charged Rotating Solitons and Black Holes 带电旋转孤子和黑洞的卡迪式表达式
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-07 DOI: 10.1002/prop.70049
Moises Bravo-Gaete, Fabiano F. Santos, Xiangdong Zhang

This paper aims to propose a Cardy-like formula characterized by the mass, charge, and angular components of the black hole, along with their corresponding solitonic configuration, obtained through a double Wick rotation. The expression also incorporates the dynamical exponent and effective spatial dimensionality as key elements. To validate the proposal, a new concrete example is presented in which recovery of the semiclassical entropy requires the soliton to possess thermodynamic quantities beyond its mass. Additionally, more examples derived from static black hole solutions are presented, employing a Lorentz boost to calculate their thermodynamic parameters. Finally, a case of a rotating configuration is included, for which the Lorentz boost is not required.

本文旨在通过双Wick旋转得到黑洞的质量、电荷和角分量及其相应的孤子构型,从而提出一个类卡迪公式。该表达式还将动态指数和有效空间维度作为关键元素。为了验证这一建议,给出了一个新的具体例子,其中半经典熵的恢复要求孤子具有超过其质量的热力学量。此外,给出了更多的静态黑洞解的例子,采用洛伦兹升压来计算它们的热力学参数。最后,给出了一种不需要洛伦兹升力的旋转构型。
{"title":"A Cardy-Like Expression For Charged Rotating Solitons and Black Holes","authors":"Moises Bravo-Gaete,&nbsp;Fabiano F. Santos,&nbsp;Xiangdong Zhang","doi":"10.1002/prop.70049","DOIUrl":"https://doi.org/10.1002/prop.70049","url":null,"abstract":"<p>This paper aims to propose a Cardy-like formula characterized by the mass, charge, and angular components of the black hole, along with their corresponding solitonic configuration, obtained through a double Wick rotation. The expression also incorporates the dynamical exponent and effective spatial dimensionality as key elements. To validate the proposal, a new concrete example is presented in which recovery of the semiclassical entropy requires the soliton to possess thermodynamic quantities beyond its mass. Additionally, more examples derived from static black hole solutions are presented, employing a Lorentz boost to calculate their thermodynamic parameters. Finally, a case of a rotating configuration is included, for which the Lorentz boost is not required.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fortschritte Der Physik-Progress of Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1