基于多层感知回归方法的火电厂建模与能量优化

Vasilios Xezonakis, Efstratios Ntantis
{"title":"基于多层感知回归方法的火电厂建模与能量优化","authors":"Vasilios Xezonakis, Efstratios Ntantis","doi":"10.37394/23203.2023.18.24","DOIUrl":null,"url":null,"abstract":"This research paper studies a thermal power plant model with an Artificial Neural Network that contributes to the accuracy improvement of actual measurement data. Neural Networks process the paradigm of algebraic expressions, and their training occurs via a Feed-Forward Back Propagation algorithm implemented in a MATLAB environment. The applied training case in a thermal power plant in Paracha includes three different algorithms, the Levenberg-Marquadt, the Scaled Conjugate Gradient, and the Bayesian Regularization, considering less number of samples to achieve more reliable results. The outcome highlights Bayesian Regularization Networks’ superiority in accuracy and performance compared to Levenberg-Marquadt and the Scaled Conjugate Gradient. The regression analysis estimates the relationship between input-independent and output-dependent variables, forecasts the energetic data, and highlights the benefits of the Bayesian Regularization method in the energy sector.","PeriodicalId":39422,"journal":{"name":"WSEAS Transactions on Systems and Control","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and Energy Optimization of a Thermal Power Plant Using a Multi-Layer Perception Regression Method\",\"authors\":\"Vasilios Xezonakis, Efstratios Ntantis\",\"doi\":\"10.37394/23203.2023.18.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper studies a thermal power plant model with an Artificial Neural Network that contributes to the accuracy improvement of actual measurement data. Neural Networks process the paradigm of algebraic expressions, and their training occurs via a Feed-Forward Back Propagation algorithm implemented in a MATLAB environment. The applied training case in a thermal power plant in Paracha includes three different algorithms, the Levenberg-Marquadt, the Scaled Conjugate Gradient, and the Bayesian Regularization, considering less number of samples to achieve more reliable results. The outcome highlights Bayesian Regularization Networks’ superiority in accuracy and performance compared to Levenberg-Marquadt and the Scaled Conjugate Gradient. The regression analysis estimates the relationship between input-independent and output-dependent variables, forecasts the energetic data, and highlights the benefits of the Bayesian Regularization method in the energy sector.\",\"PeriodicalId\":39422,\"journal\":{\"name\":\"WSEAS Transactions on Systems and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23203.2023.18.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23203.2023.18.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于人工神经网络的火电厂模型,有助于提高实际测量数据的准确性。神经网络处理代数表达式的范例,并通过在MATLAB环境中实现的前馈-反向传播算法进行训练。在Paracha某火力发电厂的应用训练案例中,采用了Levenberg-Marquadt、Scaled Conjugate Gradient和Bayesian Regularization三种不同的算法,考虑较少的样本数量以获得更可靠的结果。结果表明,与Levenberg-Marquadt和缩放共轭梯度相比,贝叶斯正则化网络在精度和性能方面具有优势。回归分析估计了输入独立变量和输出依赖变量之间的关系,预测了能量数据,并强调了贝叶斯正则化方法在能源领域的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and Energy Optimization of a Thermal Power Plant Using a Multi-Layer Perception Regression Method
This research paper studies a thermal power plant model with an Artificial Neural Network that contributes to the accuracy improvement of actual measurement data. Neural Networks process the paradigm of algebraic expressions, and their training occurs via a Feed-Forward Back Propagation algorithm implemented in a MATLAB environment. The applied training case in a thermal power plant in Paracha includes three different algorithms, the Levenberg-Marquadt, the Scaled Conjugate Gradient, and the Bayesian Regularization, considering less number of samples to achieve more reliable results. The outcome highlights Bayesian Regularization Networks’ superiority in accuracy and performance compared to Levenberg-Marquadt and the Scaled Conjugate Gradient. The regression analysis estimates the relationship between input-independent and output-dependent variables, forecasts the energetic data, and highlights the benefits of the Bayesian Regularization method in the energy sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Systems and Control
WSEAS Transactions on Systems and Control Mathematics-Control and Optimization
CiteScore
1.80
自引率
0.00%
发文量
49
期刊介绍: WSEAS Transactions on Systems and Control publishes original research papers relating to systems theory and automatic control. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with systems theory, dynamical systems, linear and non-linear control, intelligent control, robotics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Creating Fuzzy Models from Limited Data Well-posedness of the Optimal Control Problem Related to Degenerate Chemo-attraction Models Performance Analysis of MPBC with PI and Fuzzy Logic Controllers Applied to Solar Powered Electric Vehicle Application A Model-Based Adaptive Control of Turning Maneuver for Catamaran Autonomous Surface Vessel Voltage Stability in a Photovoltaic-based DC Microgrid with GaN-Based Bidirectional Converter using Fuzzy Controller for EV Charging Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1