A. Datye, S. Chakraborty, R. Chattopadhyay, MohammadArzoo Ansari, A. Deodhar, P. Mohan
{"title":"北印度洋大陆和岛屿地区降水同位素对大气过程的响应:对古季风研究的启示","authors":"A. Datye, S. Chakraborty, R. Chattopadhyay, MohammadArzoo Ansari, A. Deodhar, P. Mohan","doi":"10.54302/mausam.v74i2.5998","DOIUrl":null,"url":null,"abstract":"The isotopic composition of precipitation was studied over a terrestrial environment in western India and an island region in the Bay of Bengal. We have examined the precipitation isotopes’ response to the surface temperature and the tropospheric warming during the monsoon season. We observed that tropospheric temperature and surface temperature are positively correlated over the ocean while they are negatively correlated over the land. As a result, the precipitation isotopes in these environments show the opposite behavior to surface temperature variability. Despite this difference, precipitation isotopes in both environments respond positively to the tropospheric temperature variability, though the relationship is weaker in the terrestrial environment. The precipitation isotopic response to tropospheric temperature may provide an alternative to the precipitation and precipitation isotope relation widely used in past monsoon reconstruction.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitation isotopes’ response to the atmospheric processes over the mainland and the island region in the northern Indian Ocean: Implications to the paleo-monsoon study\",\"authors\":\"A. Datye, S. Chakraborty, R. Chattopadhyay, MohammadArzoo Ansari, A. Deodhar, P. Mohan\",\"doi\":\"10.54302/mausam.v74i2.5998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The isotopic composition of precipitation was studied over a terrestrial environment in western India and an island region in the Bay of Bengal. We have examined the precipitation isotopes’ response to the surface temperature and the tropospheric warming during the monsoon season. We observed that tropospheric temperature and surface temperature are positively correlated over the ocean while they are negatively correlated over the land. As a result, the precipitation isotopes in these environments show the opposite behavior to surface temperature variability. Despite this difference, precipitation isotopes in both environments respond positively to the tropospheric temperature variability, though the relationship is weaker in the terrestrial environment. The precipitation isotopic response to tropospheric temperature may provide an alternative to the precipitation and precipitation isotope relation widely used in past monsoon reconstruction.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i2.5998\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v74i2.5998","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Precipitation isotopes’ response to the atmospheric processes over the mainland and the island region in the northern Indian Ocean: Implications to the paleo-monsoon study
The isotopic composition of precipitation was studied over a terrestrial environment in western India and an island region in the Bay of Bengal. We have examined the precipitation isotopes’ response to the surface temperature and the tropospheric warming during the monsoon season. We observed that tropospheric temperature and surface temperature are positively correlated over the ocean while they are negatively correlated over the land. As a result, the precipitation isotopes in these environments show the opposite behavior to surface temperature variability. Despite this difference, precipitation isotopes in both environments respond positively to the tropospheric temperature variability, though the relationship is weaker in the terrestrial environment. The precipitation isotopic response to tropospheric temperature may provide an alternative to the precipitation and precipitation isotope relation widely used in past monsoon reconstruction.
期刊介绍:
MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research
journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific
research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology,
Hydrology & Geophysics. The four issues appear in January, April, July & October.