Hanene Matoussi Kort, Ahmed Abd Elmola, Néjia Laridhi Ouazaa, Dalel Sgheir, Asma Ben Saleh
{"title":"突尼斯东部近海ISIS油田白垩系潜在烃源岩成熟度:热液流体的影响","authors":"Hanene Matoussi Kort, Ahmed Abd Elmola, Néjia Laridhi Ouazaa, Dalel Sgheir, Asma Ben Saleh","doi":"10.1111/jpg.12801","DOIUrl":null,"url":null,"abstract":"An increase in source rock thermal maturity is in general linked to burial‐related heating according to the regional geothermal gradient, but maturities may also locally be influenced by high‐temperature hydrothermal fluids or igneous intrusions. In the present study of the Isis field located in the Gulf of Gabes (offshore Tunisia), we combine an analysis of organic matter maturity indicators and clay mineral signatures to constrain possible fluid/rock interactions and to define controls on the maturity of potential source rocks. Cuttings samples were collected from source rock intervals in the Cretaceous Bahloul (Cenomanian – Turonian) and underlying Fahdene (Albian – Cenomanian) Formations at the PM borehole, and detailed organic geochemical and clay mineralogical analyses of source rock samples and extracts were carried out. Samples from the Bahloul Formation (2381 m to 2400 m) consist of black to dark grey claystones and globigerinid limestones. Those from the Fahdene Formation (2400 m to 2700 m) comprise alternating claystones and chalky limestones containing globigerinids including Ticinella primula. Both source rock intervals have similar mineralogical compositions consisting of calcite, quartz, albite, anorthite, minor anatase, pyroxene and pyrite. The clay mineralogy of the formations is composed of abundant smectite (two generations), subordinate kaolinite and minor illite and/or mica. The Fahdene source rock contains organic matter consisting of mixed kerogen Types II/III; Type II OM is present in the Bahloul Formation.","PeriodicalId":16748,"journal":{"name":"Journal of Petroleum Geology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MATURITY OF POTENTIAL CRETACEOUS SOURCE ROCKS AT THE ISIS FIELD, OFFSHORE EASTERN TUNISIA: INFLUENCE OF HYDROTHERMAL FLUIDS\",\"authors\":\"Hanene Matoussi Kort, Ahmed Abd Elmola, Néjia Laridhi Ouazaa, Dalel Sgheir, Asma Ben Saleh\",\"doi\":\"10.1111/jpg.12801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increase in source rock thermal maturity is in general linked to burial‐related heating according to the regional geothermal gradient, but maturities may also locally be influenced by high‐temperature hydrothermal fluids or igneous intrusions. In the present study of the Isis field located in the Gulf of Gabes (offshore Tunisia), we combine an analysis of organic matter maturity indicators and clay mineral signatures to constrain possible fluid/rock interactions and to define controls on the maturity of potential source rocks. Cuttings samples were collected from source rock intervals in the Cretaceous Bahloul (Cenomanian – Turonian) and underlying Fahdene (Albian – Cenomanian) Formations at the PM borehole, and detailed organic geochemical and clay mineralogical analyses of source rock samples and extracts were carried out. Samples from the Bahloul Formation (2381 m to 2400 m) consist of black to dark grey claystones and globigerinid limestones. Those from the Fahdene Formation (2400 m to 2700 m) comprise alternating claystones and chalky limestones containing globigerinids including Ticinella primula. Both source rock intervals have similar mineralogical compositions consisting of calcite, quartz, albite, anorthite, minor anatase, pyroxene and pyrite. The clay mineralogy of the formations is composed of abundant smectite (two generations), subordinate kaolinite and minor illite and/or mica. The Fahdene source rock contains organic matter consisting of mixed kerogen Types II/III; Type II OM is present in the Bahloul Formation.\",\"PeriodicalId\":16748,\"journal\":{\"name\":\"Journal of Petroleum Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/jpg.12801\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/jpg.12801","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
MATURITY OF POTENTIAL CRETACEOUS SOURCE ROCKS AT THE ISIS FIELD, OFFSHORE EASTERN TUNISIA: INFLUENCE OF HYDROTHERMAL FLUIDS
An increase in source rock thermal maturity is in general linked to burial‐related heating according to the regional geothermal gradient, but maturities may also locally be influenced by high‐temperature hydrothermal fluids or igneous intrusions. In the present study of the Isis field located in the Gulf of Gabes (offshore Tunisia), we combine an analysis of organic matter maturity indicators and clay mineral signatures to constrain possible fluid/rock interactions and to define controls on the maturity of potential source rocks. Cuttings samples were collected from source rock intervals in the Cretaceous Bahloul (Cenomanian – Turonian) and underlying Fahdene (Albian – Cenomanian) Formations at the PM borehole, and detailed organic geochemical and clay mineralogical analyses of source rock samples and extracts were carried out. Samples from the Bahloul Formation (2381 m to 2400 m) consist of black to dark grey claystones and globigerinid limestones. Those from the Fahdene Formation (2400 m to 2700 m) comprise alternating claystones and chalky limestones containing globigerinids including Ticinella primula. Both source rock intervals have similar mineralogical compositions consisting of calcite, quartz, albite, anorthite, minor anatase, pyroxene and pyrite. The clay mineralogy of the formations is composed of abundant smectite (two generations), subordinate kaolinite and minor illite and/or mica. The Fahdene source rock contains organic matter consisting of mixed kerogen Types II/III; Type II OM is present in the Bahloul Formation.
期刊介绍:
Journal of Petroleum Geology is a quarterly journal devoted to the geology of oil and natural gas. Editorial preference is given to original papers on oilfield regions of the world outside North America and on topics of general application in petroleum exploration and development operations, including geochemical and geophysical studies, basin modelling and reservoir evaluation.