基于预训练神经网络的鲁棒四足动物边界有效学习

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS IET Cybersystems and Robotics Pub Date : 2022-09-25 DOI:10.1049/csy2.12062
Zhicheng Wang, Anqiao Li, Yixiao Zheng, Anhuan Xie, Zhibin Li, Jun Wu, Qiuguo Zhu
{"title":"基于预训练神经网络的鲁棒四足动物边界有效学习","authors":"Zhicheng Wang,&nbsp;Anqiao Li,&nbsp;Yixiao Zheng,&nbsp;Anhuan Xie,&nbsp;Zhibin Li,&nbsp;Jun Wu,&nbsp;Qiuguo Zhu","doi":"10.1049/csy2.12062","DOIUrl":null,"url":null,"abstract":"<p>Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles. The authors proposed an effective approach that can learn robust bounding gaits more efficiently despite its large variation in dynamic body movements. The authors first pretrained the neural network (NN) based on data from a robot operated by conventional model-based controllers, and then further optimised the pretrained NN via deep reinforcement learning (DRL). In particular, the authors designed a reward function considering contact points and phases to enforce the gait symmetry and periodicity, which improved the bounding performance. The NN-based feedback controller was learned in the simulation and directly deployed on the real quadruped robot Jueying Mini successfully. A variety of environments are presented both indoors and outdoors with the authors’ approach. The authors’ approach shows efficient computing and good locomotion results by the Jueying Mini quadrupedal robot bounding over uneven terrain.</p><p>The cover image is based on the Research Article <i>Efficient learning of robust quadruped bounding using pretrained neural networks</i> by Zhicheng Wang et al., https://doi.org/10.1049/csy2.12062.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"331-338"},"PeriodicalIF":1.5000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12062","citationCount":"1","resultStr":"{\"title\":\"Efficient learning of robust quadruped bounding using pretrained neural networks\",\"authors\":\"Zhicheng Wang,&nbsp;Anqiao Li,&nbsp;Yixiao Zheng,&nbsp;Anhuan Xie,&nbsp;Zhibin Li,&nbsp;Jun Wu,&nbsp;Qiuguo Zhu\",\"doi\":\"10.1049/csy2.12062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles. The authors proposed an effective approach that can learn robust bounding gaits more efficiently despite its large variation in dynamic body movements. The authors first pretrained the neural network (NN) based on data from a robot operated by conventional model-based controllers, and then further optimised the pretrained NN via deep reinforcement learning (DRL). In particular, the authors designed a reward function considering contact points and phases to enforce the gait symmetry and periodicity, which improved the bounding performance. The NN-based feedback controller was learned in the simulation and directly deployed on the real quadruped robot Jueying Mini successfully. A variety of environments are presented both indoors and outdoors with the authors’ approach. The authors’ approach shows efficient computing and good locomotion results by the Jueying Mini quadrupedal robot bounding over uneven terrain.</p><p>The cover image is based on the Research Article <i>Efficient learning of robust quadruped bounding using pretrained neural networks</i> by Zhicheng Wang et al., https://doi.org/10.1049/csy2.12062.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"4 4\",\"pages\":\"331-338\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12062\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

跳跃是四足运动中跨越障碍物的重要步态之一。作者提出了一种有效的方法,可以更有效地学习鲁棒边界步态,尽管它在动态身体运动中变化很大。作者首先根据传统的基于模型的控制器操作的机器人的数据对神经网络(NN)进行预训练,然后通过深度强化学习(DRL)进一步优化预训练的神经网络。特别地,作者设计了一个考虑接触点和相位的奖励函数来增强步态的对称性和周期性,提高了边界性能。在仿真中学习了基于神经网络的反馈控制器,并成功地将其直接部署在真实的四足机器人觉营Mini上。通过作者的方法,呈现了室内和室外的各种环境。该方法证明了聚影迷你四足机器人在不平坦地形上跳跃的计算效率和良好的运动效果。封面图像基于Wang Zhicheng et al., https://doi.org/10.1049/csy2.12062的研究文章《高效学习鲁棒四足动物边界使用预训练神经网络》。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient learning of robust quadruped bounding using pretrained neural networks

Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles. The authors proposed an effective approach that can learn robust bounding gaits more efficiently despite its large variation in dynamic body movements. The authors first pretrained the neural network (NN) based on data from a robot operated by conventional model-based controllers, and then further optimised the pretrained NN via deep reinforcement learning (DRL). In particular, the authors designed a reward function considering contact points and phases to enforce the gait symmetry and periodicity, which improved the bounding performance. The NN-based feedback controller was learned in the simulation and directly deployed on the real quadruped robot Jueying Mini successfully. A variety of environments are presented both indoors and outdoors with the authors’ approach. The authors’ approach shows efficient computing and good locomotion results by the Jueying Mini quadrupedal robot bounding over uneven terrain.

The cover image is based on the Research Article Efficient learning of robust quadruped bounding using pretrained neural networks by Zhicheng Wang et al., https://doi.org/10.1049/csy2.12062.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
期刊最新文献
3D-printed biomimetic and bioinspired soft actuators Correction-enabled reversible data hiding with pixel repetition for high embedding rate and quality preservation Anti-sloshing control: Flatness-based trajectory planning and tracking control with an integrated extended state observer Internal and external disturbances aware motion planning and control for quadrotors Multi-feature fusion and memory-based mobile robot target tracking system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1