Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi
{"title":"含分数扩散的多孔介质方程的分析和平均场推导","authors":"Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi","doi":"10.1080/03605302.2022.2118608","DOIUrl":null,"url":null,"abstract":"Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analysis and mean-field derivation of a porous-medium equation with fractional diffusion\",\"authors\":\"Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi\",\"doi\":\"10.1080/03605302.2022.2118608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2118608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2118608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Analysis and mean-field derivation of a porous-medium equation with fractional diffusion
Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.