了解涡流阵列用于高性能检测

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Evaluation Pub Date : 2021-10-01 DOI:10.32548/2021.me-04226
Anne-Marie Allard, M. Grenier, Mitchell Sirois, C. Wassink
{"title":"了解涡流阵列用于高性能检测","authors":"Anne-Marie Allard, M. Grenier, Mitchell Sirois, C. Wassink","doi":"10.32548/2021.me-04226","DOIUrl":null,"url":null,"abstract":"Eddy current testing (ECT) has been used for quite a while now and has been proven a reliable surface inspection technique for conductive materials. In the last 15 to 20 years, this technique has evolved toward the use of eddy current arrays (ECAs), and many applications can now benefit from this configuration to improve data quality, inspection speed, and ease of deployment, and considerably reduce operator dependency. The physics principle behind ECT and ECA is the same and was addressed in a previous issue of Materials Evaluation (Wassink et al. 2021). In this paper, we will discuss the main differences between ECT and ECA as well as how the arrangement of coils in an array can allow for optimized detection capabilities on different materials or types of defects. Common applications where ECA has demonstrated its strength will also be discussed.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding Eddy Current Array for High-Performance Inspections\",\"authors\":\"Anne-Marie Allard, M. Grenier, Mitchell Sirois, C. Wassink\",\"doi\":\"10.32548/2021.me-04226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eddy current testing (ECT) has been used for quite a while now and has been proven a reliable surface inspection technique for conductive materials. In the last 15 to 20 years, this technique has evolved toward the use of eddy current arrays (ECAs), and many applications can now benefit from this configuration to improve data quality, inspection speed, and ease of deployment, and considerably reduce operator dependency. The physics principle behind ECT and ECA is the same and was addressed in a previous issue of Materials Evaluation (Wassink et al. 2021). In this paper, we will discuss the main differences between ECT and ECA as well as how the arrangement of coils in an array can allow for optimized detection capabilities on different materials or types of defects. Common applications where ECA has demonstrated its strength will also be discussed.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2021.me-04226\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2021.me-04226","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1

摘要

涡流检测(ECT)已经使用了很长一段时间,并且已经被证明是一种可靠的导电材料表面检测技术。在过去的15到20年里,这项技术已经发展到使用涡流阵列(ECA),许多应用现在可以从这种配置中受益,以提高数据质量、检查速度和部署的简易性,并大大减少对操作员的依赖。ECT和ECA背后的物理原理是相同的,并在前一期《材料评估》中进行了阐述(Wassink等人,2021)。在本文中,我们将讨论ECT和ECA之间的主要区别,以及阵列中线圈的排列如何能够优化对不同材料或类型缺陷的检测能力。还将讨论ECA已证明其实力的常见应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Eddy Current Array for High-Performance Inspections
Eddy current testing (ECT) has been used for quite a while now and has been proven a reliable surface inspection technique for conductive materials. In the last 15 to 20 years, this technique has evolved toward the use of eddy current arrays (ECAs), and many applications can now benefit from this configuration to improve data quality, inspection speed, and ease of deployment, and considerably reduce operator dependency. The physics principle behind ECT and ECA is the same and was addressed in a previous issue of Materials Evaluation (Wassink et al. 2021). In this paper, we will discuss the main differences between ECT and ECA as well as how the arrangement of coils in an array can allow for optimized detection capabilities on different materials or types of defects. Common applications where ECA has demonstrated its strength will also be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Evaluation
Materials Evaluation 工程技术-材料科学:表征与测试
CiteScore
0.90
自引率
16.70%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.
期刊最新文献
Terahertz Nondestructive Evaluation of Corroding Multilayer Paint Stacks Edge Response and Defect Detectability in Flat Panel Digital Radiography The Evolution of Weld Inspection: Unlocking the Potential of Phased Array Ultrasonic Testing Intelligent Method for Corrosion Detection and Quantification in Aircraft Lap Joints Using Pulsed Eddy Current Multibranch Block-Based Grain Size Classification Of Hybrid Disk Using Ultrasonic Scattering: A Deep Learning Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1