应用闭腔流变仪斜坡试验获得稳态剪切粘度η(γ̇)

IF 5.8 4区 工程技术 Q1 MECHANICS Applied Rheology Pub Date : 2023-01-01 DOI:10.1515/arh-2022-0149
Felix Ellwanger, Christos K. Georgantopoulos, H. Karbstein, Manfred Wilhelm, M. Azad Emin
{"title":"应用闭腔流变仪斜坡试验获得稳态剪切粘度η(γ̇)","authors":"Felix Ellwanger, Christos K. Georgantopoulos, H. Karbstein, Manfred Wilhelm, M. Azad Emin","doi":"10.1515/arh-2022-0149","DOIUrl":null,"url":null,"abstract":"Abstract The steady-state shear viscosity η ( γ ̇ ) \\eta (\\dot{\\gamma }) is required in controlling processing parameters for the extrusion processing of polymer melts. A new method, the so-called ramp test, is investigated in this study to obtain the steady-state shear viscosity with a closed cavity rheometer (CCR). To verify the method and the accuracy of the CCR data, three commercial polyolefin polymers, a low-density polyethylene (LDPE), a linear low-density polyethylene (LLDPE), and a polybutadiene (PBD), were used as model systems. Measurements of the magnitude of the complex viscosity ∣ η ⁎ ( ω ) ∣ | {\\eta }^{\\ast }(\\omega )| were compared with the steady-state shear viscosity data obtained by capillary rheometer and CCR. Further, time–temperature superposition master curves of the magnitude of the complex viscosity and steady-state shear viscosity obtained by CCR were developed for LLDPE and PBD. The influence of the cavity sealing on the instrument’s accuracy to obtain the steady-state shear viscosity was investigated using the finite element method simulations. Thus, it was shown that the ramp test performed by CCR is a practical method to determine reliable and reproducible data of the steady-state shear viscosity within a wide range of temperatures (T = 50–180°C) for low and high viscous materials ( ∣ η ⁎ ( ω ) ∣ | {\\eta }^{\\ast }(\\omega )| = 1.6–480 kPa s, M w = 144–375 kg mol−1).","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of the ramp test from a closed cavity rheometer to obtain the steady-state shear viscosity η(γ̇)\",\"authors\":\"Felix Ellwanger, Christos K. Georgantopoulos, H. Karbstein, Manfred Wilhelm, M. Azad Emin\",\"doi\":\"10.1515/arh-2022-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The steady-state shear viscosity η ( γ ̇ ) \\\\eta (\\\\dot{\\\\gamma }) is required in controlling processing parameters for the extrusion processing of polymer melts. A new method, the so-called ramp test, is investigated in this study to obtain the steady-state shear viscosity with a closed cavity rheometer (CCR). To verify the method and the accuracy of the CCR data, three commercial polyolefin polymers, a low-density polyethylene (LDPE), a linear low-density polyethylene (LLDPE), and a polybutadiene (PBD), were used as model systems. Measurements of the magnitude of the complex viscosity ∣ η ⁎ ( ω ) ∣ | {\\\\eta }^{\\\\ast }(\\\\omega )| were compared with the steady-state shear viscosity data obtained by capillary rheometer and CCR. Further, time–temperature superposition master curves of the magnitude of the complex viscosity and steady-state shear viscosity obtained by CCR were developed for LLDPE and PBD. The influence of the cavity sealing on the instrument’s accuracy to obtain the steady-state shear viscosity was investigated using the finite element method simulations. Thus, it was shown that the ramp test performed by CCR is a practical method to determine reliable and reproducible data of the steady-state shear viscosity within a wide range of temperatures (T = 50–180°C) for low and high viscous materials ( ∣ η ⁎ ( ω ) ∣ | {\\\\eta }^{\\\\ast }(\\\\omega )| = 1.6–480 kPa s, M w = 144–375 kg mol−1).\",\"PeriodicalId\":50738,\"journal\":{\"name\":\"Applied Rheology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/arh-2022-0149\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2022-0149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要控制聚合物熔体挤出加工的工艺参数需要稳态剪切粘度η(γ̇)\eta(\dot{\gamma})。本文研究了一种新的方法,即所谓的斜坡试验,用闭腔流变仪(CCR)获得稳态剪切粘度。为了验证CCR数据的方法和准确性,使用三种商业聚烯烃聚合物,低密度聚乙烯(LDPE)、线性低密度聚乙烯和聚丁二烯(PBD)作为模型系统。将复粘度的大小测量结果与毛细管流变仪和CCR获得的稳态剪切粘度数据进行比较。此外,为LLDPE和PBD开发了CCR获得的复合粘度和稳态剪切粘度大小的时间-温度叠加主曲线。采用有限元模拟方法研究了空腔密封对仪器获得稳态剪切粘度精度的影响。因此,研究表明,CCR进行的斜坡试验是一种实用的方法,可以确定低粘度和高粘度材料在宽温度范围(T=50–180°C)内稳态剪切粘度的可靠且可重复的数据 千帕 s、 M w=144–375 公斤 mol−1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of the ramp test from a closed cavity rheometer to obtain the steady-state shear viscosity η(γ̇)
Abstract The steady-state shear viscosity η ( γ ̇ ) \eta (\dot{\gamma }) is required in controlling processing parameters for the extrusion processing of polymer melts. A new method, the so-called ramp test, is investigated in this study to obtain the steady-state shear viscosity with a closed cavity rheometer (CCR). To verify the method and the accuracy of the CCR data, three commercial polyolefin polymers, a low-density polyethylene (LDPE), a linear low-density polyethylene (LLDPE), and a polybutadiene (PBD), were used as model systems. Measurements of the magnitude of the complex viscosity ∣ η ⁎ ( ω ) ∣ | {\eta }^{\ast }(\omega )| were compared with the steady-state shear viscosity data obtained by capillary rheometer and CCR. Further, time–temperature superposition master curves of the magnitude of the complex viscosity and steady-state shear viscosity obtained by CCR were developed for LLDPE and PBD. The influence of the cavity sealing on the instrument’s accuracy to obtain the steady-state shear viscosity was investigated using the finite element method simulations. Thus, it was shown that the ramp test performed by CCR is a practical method to determine reliable and reproducible data of the steady-state shear viscosity within a wide range of temperatures (T = 50–180°C) for low and high viscous materials ( ∣ η ⁎ ( ω ) ∣ | {\eta }^{\ast }(\omega )| = 1.6–480 kPa s, M w = 144–375 kg mol−1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Rheology
Applied Rheology 物理-力学
CiteScore
3.00
自引率
5.60%
发文量
7
审稿时长
>12 weeks
期刊介绍: Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
期刊最新文献
Prediction of sensory textures of cosmetics using large amplitude oscillatory shear and extensional rheology Viscoplastic fluid flow in pipes: A rheological study using in-situ laser Doppler velocimetry Structural damage characteristics and mechanism of granite residual soil Rheological characteristics and seepage laws of sandstone specimens containing an inclined single fracture under three-dimensional stress Computational analysis of nanoparticles and waste discharge concentration past a rotating sphere with Lorentz forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1