{"title":"DFA和SDCST方法检测心房颤动","authors":"R. N. Vargas, Antônio C. P. Veiga, R. Linhares","doi":"10.3233/mas-210532","DOIUrl":null,"url":null,"abstract":"Many cardiac disorders were diagnosed by analyzing an electrocardiogram signal, in particular, atrial fibrillation. We join the SDCST method with the Detrended Fluctuation Analysis (DFA) and the backpropagation net to identify atrial fibrillation in one hundred ECG signals obtained from Physionet Challenge 2017 database. The accuracy of the proposed classifier parameter is 97% for the training set and 95% for the test set.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atrial fibrillation detection by DFA and SDCST methods\",\"authors\":\"R. N. Vargas, Antônio C. P. Veiga, R. Linhares\",\"doi\":\"10.3233/mas-210532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many cardiac disorders were diagnosed by analyzing an electrocardiogram signal, in particular, atrial fibrillation. We join the SDCST method with the Detrended Fluctuation Analysis (DFA) and the backpropagation net to identify atrial fibrillation in one hundred ECG signals obtained from Physionet Challenge 2017 database. The accuracy of the proposed classifier parameter is 97% for the training set and 95% for the test set.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-210532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-210532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Atrial fibrillation detection by DFA and SDCST methods
Many cardiac disorders were diagnosed by analyzing an electrocardiogram signal, in particular, atrial fibrillation. We join the SDCST method with the Detrended Fluctuation Analysis (DFA) and the backpropagation net to identify atrial fibrillation in one hundred ECG signals obtained from Physionet Challenge 2017 database. The accuracy of the proposed classifier parameter is 97% for the training set and 95% for the test set.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.