用搅拌液镉阴极在LiCl-KCl熔盐中电化学沉积U和RE元素

IF 1 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY Science and Technology of Nuclear Installations Pub Date : 2021-10-28 DOI:10.1155/2021/5788732
Gha-Young Kim, C. Lee, D. Yoon, Junhyuk Jang, Sung-Jai Lee
{"title":"用搅拌液镉阴极在LiCl-KCl熔盐中电化学沉积U和RE元素","authors":"Gha-Young Kim, C. Lee, D. Yoon, Junhyuk Jang, Sung-Jai Lee","doi":"10.1155/2021/5788732","DOIUrl":null,"url":null,"abstract":"This study was conducted in an attempt to understand the effect of a stirred liquid cadmium cathode (LCC) on the electrodeposition of U and U/RE on Cd. For this purpose, a series of electrowinning tests were performed using an LCC equipped with a Cd stirrer. Initially, three runs of the U electrodeposition tests were conducted using LiCl-KCl-UCl3 at 500°C under a constant current. From the results obtained from the initial three runs, it was found that the maximum deposited amount of U was 7.4 wt% U/Cd. U dendrite formation on the LCC crucible was not observed across each of the three runs. Three additional runs were conducted using LiCl-KCl-UCl3-RECl3 to determine the extent of U/RE electrodeposition. The maximum number of moles of U + RE metals deposited was 0.07, a value estimated to be 2.14 times higher than the solubility limits exhibited by these metals in Cd. The results of this study show that the use of a Cd stirrer significantly improves the extent of U deposition.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrochemical Deposition of U and RE Elements Using the Stirred Liquid Cadmium Cathode in LiCl-KCl Molten Salts\",\"authors\":\"Gha-Young Kim, C. Lee, D. Yoon, Junhyuk Jang, Sung-Jai Lee\",\"doi\":\"10.1155/2021/5788732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was conducted in an attempt to understand the effect of a stirred liquid cadmium cathode (LCC) on the electrodeposition of U and U/RE on Cd. For this purpose, a series of electrowinning tests were performed using an LCC equipped with a Cd stirrer. Initially, three runs of the U electrodeposition tests were conducted using LiCl-KCl-UCl3 at 500°C under a constant current. From the results obtained from the initial three runs, it was found that the maximum deposited amount of U was 7.4 wt% U/Cd. U dendrite formation on the LCC crucible was not observed across each of the three runs. Three additional runs were conducted using LiCl-KCl-UCl3-RECl3 to determine the extent of U/RE electrodeposition. The maximum number of moles of U + RE metals deposited was 0.07, a value estimated to be 2.14 times higher than the solubility limits exhibited by these metals in Cd. The results of this study show that the use of a Cd stirrer significantly improves the extent of U deposition.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5788732\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2021/5788732","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在了解搅拌液体镉阴极(LCC)对U和U/RE在Cd上电沉积的影响。为此,使用配备Cd搅拌器的LCC进行了一系列电积试验。最初,使用LiCl-KCl-UCl3在500°C恒流条件下进行了三次U电沉积试验。从前三次运行的结果来看,U的最大沉积量为7.4 wt% U/Cd。LCC坩埚上U枝晶的形成在三次运行中都没有观察到。使用LiCl-KCl-UCl3-RECl3进行了另外三次运行,以确定U/RE电沉积的程度。U + RE金属沉积的最大摩尔数为0.07,估计是这些金属在Cd中的溶解度极限的2.14倍。本研究结果表明,使用Cd搅拌器显著提高了U的沉积程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical Deposition of U and RE Elements Using the Stirred Liquid Cadmium Cathode in LiCl-KCl Molten Salts
This study was conducted in an attempt to understand the effect of a stirred liquid cadmium cathode (LCC) on the electrodeposition of U and U/RE on Cd. For this purpose, a series of electrowinning tests were performed using an LCC equipped with a Cd stirrer. Initially, three runs of the U electrodeposition tests were conducted using LiCl-KCl-UCl3 at 500°C under a constant current. From the results obtained from the initial three runs, it was found that the maximum deposited amount of U was 7.4 wt% U/Cd. U dendrite formation on the LCC crucible was not observed across each of the three runs. Three additional runs were conducted using LiCl-KCl-UCl3-RECl3 to determine the extent of U/RE electrodeposition. The maximum number of moles of U + RE metals deposited was 0.07, a value estimated to be 2.14 times higher than the solubility limits exhibited by these metals in Cd. The results of this study show that the use of a Cd stirrer significantly improves the extent of U deposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Nuclear Installations
Science and Technology of Nuclear Installations NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.
期刊最新文献
Assessment of Radiation Dose Associated with the Atmospheric Release of 41Ar from the TRIGA Mark-II Research Reactor in Bangladesh Design Change and Operational Consideration of the HVAC System during Nuclear Power Plant Decommissioning Accuracy Evaluation of Monte Carlo Simulation Results Using ENDF/B-VIII.0 and JENDL-5 Libraries for 10 MWth Micro Heat Pipe-Cooled Reactor Effect of Photomultiplier Tube Voltage on the Performance of Sealed NaI (Tl) Scintillator Detectors An Association Rule Mining-Based Method for Revealing the Impact of Operational Sequence on Nuclear Power Plants Operating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1