数据通信网络的地震危险性分析

IF 2.7 Q2 ENGINEERING, CIVIL Sustainable and Resilient Infrastructure Pub Date : 2022-02-12 DOI:10.1080/23789689.2021.2004646
S. Esposito, A. Botta, M. De Falco, Adriana Pacifico, E. Chioccarelli, A. Pescapé, A. Santo, I. Iervolino
{"title":"数据通信网络的地震危险性分析","authors":"S. Esposito, A. Botta, M. De Falco, Adriana Pacifico, E. Chioccarelli, A. Pescapé, A. Santo, I. Iervolino","doi":"10.1080/23789689.2021.2004646","DOIUrl":null,"url":null,"abstract":"ABSTRACT Data communication networks have large importance for the immediate post-earthquake emergency management and community resilience. In this study, the framework of simulation-based probabilistic seismic risk analysis of data communication infrastructure is applied to the real case of the inter-university data network of the Campania region (southern Italy). The network is constituted by point-like facilities (racks located within buildings and containing the device routing and managing traffic) and distributed links (buried fiber optic cables). The seismological, geological, and geotechnical features of the region were characterized together with the seismic vulnerability of each element of the network. The network performance is quantified in terms of traffic loss before and after the seismic event. Results are provided in terms of annual rate of events exceeding traffic loss thresholds and allow to identify the portion of the network mostly contributing to the seismic performance.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":"7 1","pages":"655 - 672"},"PeriodicalIF":2.7000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Seismic risk analysis of a data communication network\",\"authors\":\"S. Esposito, A. Botta, M. De Falco, Adriana Pacifico, E. Chioccarelli, A. Pescapé, A. Santo, I. Iervolino\",\"doi\":\"10.1080/23789689.2021.2004646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Data communication networks have large importance for the immediate post-earthquake emergency management and community resilience. In this study, the framework of simulation-based probabilistic seismic risk analysis of data communication infrastructure is applied to the real case of the inter-university data network of the Campania region (southern Italy). The network is constituted by point-like facilities (racks located within buildings and containing the device routing and managing traffic) and distributed links (buried fiber optic cables). The seismological, geological, and geotechnical features of the region were characterized together with the seismic vulnerability of each element of the network. The network performance is quantified in terms of traffic loss before and after the seismic event. Results are provided in terms of annual rate of events exceeding traffic loss thresholds and allow to identify the portion of the network mostly contributing to the seismic performance.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":\"7 1\",\"pages\":\"655 - 672\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2021.2004646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2021.2004646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

摘要

摘要数据通信网络对地震后应急管理和社区恢复能力具有重要意义。在本研究中,基于模拟的数据通信基础设施概率地震风险分析框架被应用于坎帕尼亚地区(意大利南部)大学间数据网络的真实案例。该网络由点状设施(位于建筑物内的机架,包含设备路由和管理流量)和分布式链路(埋地光纤电缆)组成。对该地区的地震学、地质和岩土工程特征以及网络各要素的地震脆弱性进行了表征。根据地震事件前后的流量损失来量化网络性能。根据超过交通损失阈值的年事件率提供结果,并允许识别网络中对地震性能最有贡献的部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic risk analysis of a data communication network
ABSTRACT Data communication networks have large importance for the immediate post-earthquake emergency management and community resilience. In this study, the framework of simulation-based probabilistic seismic risk analysis of data communication infrastructure is applied to the real case of the inter-university data network of the Campania region (southern Italy). The network is constituted by point-like facilities (racks located within buildings and containing the device routing and managing traffic) and distributed links (buried fiber optic cables). The seismological, geological, and geotechnical features of the region were characterized together with the seismic vulnerability of each element of the network. The network performance is quantified in terms of traffic loss before and after the seismic event. Results are provided in terms of annual rate of events exceeding traffic loss thresholds and allow to identify the portion of the network mostly contributing to the seismic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.20%
发文量
34
期刊介绍: Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities. Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.
期刊最新文献
Impact-oriented risk management: guiding practitioners towards a resilient supply chain design Road surface damages allocation with RTI-IMS software based on YOLO V5 model Allocation and sizing of dispatchable distributed generators considering value addition in resiliency and sustainability of power delivery infrastructure Developing a social value model for Oman’s national infrastructure planning: a hermeneutical approach Measuring the economic and societal value of reliability/resilience investments: case studies of islanded communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1