{"title":"致密物体凝聚的速率","authors":"Ilya Mandel, Floor S. Broekgaarden","doi":"10.1007/s41114-021-00034-3","DOIUrl":null,"url":null,"abstract":"<div><p>Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects—neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"25 1","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-021-00034-3.pdf","citationCount":"68","resultStr":"{\"title\":\"Rates of compact object coalescences\",\"authors\":\"Ilya Mandel, Floor S. Broekgaarden\",\"doi\":\"10.1007/s41114-021-00034-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects—neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.</p></div>\",\"PeriodicalId\":686,\"journal\":{\"name\":\"Living Reviews in Relativity\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":26.3000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41114-021-00034-3.pdf\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Relativity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41114-021-00034-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Relativity","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41114-021-00034-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects—neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.
期刊介绍:
Living Reviews in Relativity is a peer-reviewed, platinum open-access journal that publishes reviews of research across all areas of relativity. Directed towards the scientific community at or above the graduate-student level, articles are solicited from leading authorities and provide critical assessments of current research. They offer annotated insights into key literature and describe available resources, maintaining an up-to-date suite of high-quality reviews, thus embodying the "living" aspect of the journal's title.
Serving as a valuable tool for the scientific community, Living Reviews in Relativity is often the first stop for researchers seeking information on current work in relativity. Written by experts, the reviews cite, explain, and assess the most relevant resources in a given field, evaluating existing work and suggesting areas for further research.
Attracting readers from the entire relativity community, the journal is useful for graduate students conducting literature surveys, researchers seeking the latest results in unfamiliar fields, and lecturers in need of information and visual materials for presentations at all levels.