运动适应:范例、原则和观点

IF 5 Q1 ENGINEERING, BIOMEDICAL Progress in biomedical engineering (Bristol, England) Pub Date : 2022-09-13 DOI:10.1088/2516-1091/ac91b6
G. Severini, M. Zych
{"title":"运动适应:范例、原则和观点","authors":"G. Severini, M. Zych","doi":"10.1088/2516-1091/ac91b6","DOIUrl":null,"url":null,"abstract":"The term ‘locomotor adaptations’ (LMA) indicates the alteration in motor commands that is automatically or volitionally generated in response to a perturbation continuously altering the task demands of locomotion. LMAs have been widely studied, using a variety of experimental paradigms and analysis techniques. The perturbation can be expected or unexpected and constituted by a change in the movement environment, by forces actively pushing the person’s body segments, by a modification in the sensory feedback associated with the task or by explicit task instructions. The study of LMAs has been key in widening our understanding of the principles regulating bipedal locomotion, from the overall strategies driving the short-term adjustments of motor commands, down to the different neural circuits involved in the different aspects of locomotion. In this paper we will provide an in-depth review of the research field of LMAs. We will start with an analysis of the principles driving the evolution of bipedal locomotion in humans. Then we will review the different experimental paradigms that have been used to trigger LMAs. We will analyze the evidence on the neurophysiological correlates of adaptation and the behavioral reasons behind it. We will then discuss the characteristics of LMA such as transfer, generalization, and savings. This will be followed by a critical analysis of how different studies point to different task-goal related drivers of adaptation. Finally, we will conclude with a perspective on the research field of LMAs and on its ramifications in neuroscience and rehabilitation.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Locomotor adaptations: paradigms, principles and perspectives\",\"authors\":\"G. Severini, M. Zych\",\"doi\":\"10.1088/2516-1091/ac91b6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The term ‘locomotor adaptations’ (LMA) indicates the alteration in motor commands that is automatically or volitionally generated in response to a perturbation continuously altering the task demands of locomotion. LMAs have been widely studied, using a variety of experimental paradigms and analysis techniques. The perturbation can be expected or unexpected and constituted by a change in the movement environment, by forces actively pushing the person’s body segments, by a modification in the sensory feedback associated with the task or by explicit task instructions. The study of LMAs has been key in widening our understanding of the principles regulating bipedal locomotion, from the overall strategies driving the short-term adjustments of motor commands, down to the different neural circuits involved in the different aspects of locomotion. In this paper we will provide an in-depth review of the research field of LMAs. We will start with an analysis of the principles driving the evolution of bipedal locomotion in humans. Then we will review the different experimental paradigms that have been used to trigger LMAs. We will analyze the evidence on the neurophysiological correlates of adaptation and the behavioral reasons behind it. We will then discuss the characteristics of LMA such as transfer, generalization, and savings. This will be followed by a critical analysis of how different studies point to different task-goal related drivers of adaptation. Finally, we will conclude with a perspective on the research field of LMAs and on its ramifications in neuroscience and rehabilitation.\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ac91b6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ac91b6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

术语“运动适应”(LMA)表示运动命令的改变,该改变是响应于不断改变运动任务需求的扰动而自动或自愿产生的。LMA已经被广泛研究,使用了各种实验范式和分析技术。扰动可以是预期的或出乎意料的,并且由运动环境的变化、主动推动人的身体部位的力、与任务相关的感觉反馈的修改或明确的任务指令构成。LMA的研究是拓宽我们对调节两足动物运动原理的理解的关键,从驱动运动命令短期调整的整体策略,到运动不同方面涉及的不同神经回路。在本文中,我们将对LMA的研究领域进行深入的综述。我们将从分析驱动人类两足运动进化的原理开始。然后,我们将回顾用于触发LMA的不同实验范式。我们将分析适应的神经生理学相关性及其背后的行为原因的证据。然后我们将讨论LMA的特征,如转移、泛化和储蓄。接下来将对不同的研究如何指向不同的任务目标相关的适应驱动因素进行批判性分析。最后,我们将对LMA的研究领域及其在神经科学和康复中的影响进行展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Locomotor adaptations: paradigms, principles and perspectives
The term ‘locomotor adaptations’ (LMA) indicates the alteration in motor commands that is automatically or volitionally generated in response to a perturbation continuously altering the task demands of locomotion. LMAs have been widely studied, using a variety of experimental paradigms and analysis techniques. The perturbation can be expected or unexpected and constituted by a change in the movement environment, by forces actively pushing the person’s body segments, by a modification in the sensory feedback associated with the task or by explicit task instructions. The study of LMAs has been key in widening our understanding of the principles regulating bipedal locomotion, from the overall strategies driving the short-term adjustments of motor commands, down to the different neural circuits involved in the different aspects of locomotion. In this paper we will provide an in-depth review of the research field of LMAs. We will start with an analysis of the principles driving the evolution of bipedal locomotion in humans. Then we will review the different experimental paradigms that have been used to trigger LMAs. We will analyze the evidence on the neurophysiological correlates of adaptation and the behavioral reasons behind it. We will then discuss the characteristics of LMA such as transfer, generalization, and savings. This will be followed by a critical analysis of how different studies point to different task-goal related drivers of adaptation. Finally, we will conclude with a perspective on the research field of LMAs and on its ramifications in neuroscience and rehabilitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
期刊最新文献
Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. Biomedical applications of the engineered AIEgen-lipid nanostructurein vitroandin vivo. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1