D. K. Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari
{"title":"TiO2/ZnO: ii型异质结构对电化学结晶紫染料降解的研究","authors":"D. K. Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari","doi":"10.20450/mjcce.2020.2058","DOIUrl":null,"url":null,"abstract":"Semiconductor nanomaterials with proper band edge alignments forming “heterostructure” assemblies have significant importance in water splitting, dye degradation, and other electrochemical studies. The formed heterojunction between material phases facilitates fast charge carrier transport and, thereby, improves electrochemical performance in associated processes. Herein, we report a type-II heterostructure combining TiO 2 and ZnO nanomaterials for electrochemical crystal violet dye degradation studies. The rationale in choosing the above materials (TiO 2 , ZnO) in the present study includes stability, lack of toxicity, and high oxidation power, but they also facilitate fast charge carrier movements due to proper band edge alignments, forming a type-II heterostructure assembly. Cyclic voltammetry, combined with ultraviolet-visible analysis, was used to identify the cathodic and anodic peak currents and trace the exact mechanism of dye degradation. The electro-catalytic performance of TiO 2 /ZnO heterostructured materials fabricated on titania (Ti) substrate show higher performance, in comparison to all individual material interfaces, due to synergistic interaction and synchronized charge transport.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TiO2/ZnO: Type-II Heterostructures for electrochemical crystal violet dye degradation studies\",\"authors\":\"D. K. Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari\",\"doi\":\"10.20450/mjcce.2020.2058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor nanomaterials with proper band edge alignments forming “heterostructure” assemblies have significant importance in water splitting, dye degradation, and other electrochemical studies. The formed heterojunction between material phases facilitates fast charge carrier transport and, thereby, improves electrochemical performance in associated processes. Herein, we report a type-II heterostructure combining TiO 2 and ZnO nanomaterials for electrochemical crystal violet dye degradation studies. The rationale in choosing the above materials (TiO 2 , ZnO) in the present study includes stability, lack of toxicity, and high oxidation power, but they also facilitate fast charge carrier movements due to proper band edge alignments, forming a type-II heterostructure assembly. Cyclic voltammetry, combined with ultraviolet-visible analysis, was used to identify the cathodic and anodic peak currents and trace the exact mechanism of dye degradation. The electro-catalytic performance of TiO 2 /ZnO heterostructured materials fabricated on titania (Ti) substrate show higher performance, in comparison to all individual material interfaces, due to synergistic interaction and synchronized charge transport.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.20450/mjcce.2020.2058\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2020.2058","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
TiO2/ZnO: Type-II Heterostructures for electrochemical crystal violet dye degradation studies
Semiconductor nanomaterials with proper band edge alignments forming “heterostructure” assemblies have significant importance in water splitting, dye degradation, and other electrochemical studies. The formed heterojunction between material phases facilitates fast charge carrier transport and, thereby, improves electrochemical performance in associated processes. Herein, we report a type-II heterostructure combining TiO 2 and ZnO nanomaterials for electrochemical crystal violet dye degradation studies. The rationale in choosing the above materials (TiO 2 , ZnO) in the present study includes stability, lack of toxicity, and high oxidation power, but they also facilitate fast charge carrier movements due to proper band edge alignments, forming a type-II heterostructure assembly. Cyclic voltammetry, combined with ultraviolet-visible analysis, was used to identify the cathodic and anodic peak currents and trace the exact mechanism of dye degradation. The electro-catalytic performance of TiO 2 /ZnO heterostructured materials fabricated on titania (Ti) substrate show higher performance, in comparison to all individual material interfaces, due to synergistic interaction and synchronized charge transport.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.