{"title":"表观遗传修饰p73 -抗肿瘤表观遗传靶点的表达","authors":"Faiza Naseer, M. Saleem","doi":"10.4081/oncol.2019.421","DOIUrl":null,"url":null,"abstract":"A p73 is a new member of p53 family of transcription factor, having two types. First is TAp73, transcriptionally active and expressed via upstream promoter as a tumor suppressor and vital apoptotic inductor, it also has a key role in cell cycle arrest/differentiation and Second is ΔNp73 that is transcriptionally inactive and expressed via downstream regulator as oncogenes. Both types are expressed in various isoforms, which originate from alternative splicing events at the C-terminus. Upon DNA damage, posttranslational modifications cause conformational changes in various amino acid residues via induction or inhibition of various proteins, which are present in the structural domains of p73. These modifications may cause up- or down-regulation of p73 expression levels, as well as alters the transcriptional activity and/or stability of the protein. In this review, we have made an effort to assemble all existing data regarding the role of p73, its modification and after effects in cancer.","PeriodicalId":19487,"journal":{"name":"Oncology Reviews","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4081/oncol.2019.421","citationCount":"0","resultStr":"{\"title\":\"Epigenetic modification in the expression of p73 p73 - epigenetic target for anticancer therapy\",\"authors\":\"Faiza Naseer, M. Saleem\",\"doi\":\"10.4081/oncol.2019.421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A p73 is a new member of p53 family of transcription factor, having two types. First is TAp73, transcriptionally active and expressed via upstream promoter as a tumor suppressor and vital apoptotic inductor, it also has a key role in cell cycle arrest/differentiation and Second is ΔNp73 that is transcriptionally inactive and expressed via downstream regulator as oncogenes. Both types are expressed in various isoforms, which originate from alternative splicing events at the C-terminus. Upon DNA damage, posttranslational modifications cause conformational changes in various amino acid residues via induction or inhibition of various proteins, which are present in the structural domains of p73. These modifications may cause up- or down-regulation of p73 expression levels, as well as alters the transcriptional activity and/or stability of the protein. In this review, we have made an effort to assemble all existing data regarding the role of p73, its modification and after effects in cancer.\",\"PeriodicalId\":19487,\"journal\":{\"name\":\"Oncology Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4081/oncol.2019.421\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/oncol.2019.421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/oncol.2019.421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Epigenetic modification in the expression of p73 p73 - epigenetic target for anticancer therapy
A p73 is a new member of p53 family of transcription factor, having two types. First is TAp73, transcriptionally active and expressed via upstream promoter as a tumor suppressor and vital apoptotic inductor, it also has a key role in cell cycle arrest/differentiation and Second is ΔNp73 that is transcriptionally inactive and expressed via downstream regulator as oncogenes. Both types are expressed in various isoforms, which originate from alternative splicing events at the C-terminus. Upon DNA damage, posttranslational modifications cause conformational changes in various amino acid residues via induction or inhibition of various proteins, which are present in the structural domains of p73. These modifications may cause up- or down-regulation of p73 expression levels, as well as alters the transcriptional activity and/or stability of the protein. In this review, we have made an effort to assemble all existing data regarding the role of p73, its modification and after effects in cancer.
期刊介绍:
Oncology Reviews is a quarterly peer-reviewed, international journal that publishes authoritative state-of-the-art reviews on preclinical and clinical aspects of oncology. The journal will provide up-to-date information on the latest achievements in different fields of oncology for both practising clinicians and basic researchers. Oncology Reviews aims at being international in scope and readership, as reflected also by its Editorial Board, gathering the world leading experts in both pre-clinical research and everyday clinical practice. The journal is open for publication of supplements, monothematic issues and for publishing abstracts of scientific meetings; conditions can be obtained from the Editor-in-Chief or the publisher.