可扩展2T2R逻辑计算结构:从数字逻辑电路到三维堆叠存储器阵列的设计

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2022-09-15 DOI:10.1109/JXCDC.2022.3206778
Zongxian Yang;Kangqiang Pan;Norman Y. Zhou;Lan Wei
{"title":"可扩展2T2R逻辑计算结构:从数字逻辑电路到三维堆叠存储器阵列的设计","authors":"Zongxian Yang;Kangqiang Pan;Norman Y. Zhou;Lan Wei","doi":"10.1109/JXCDC.2022.3206778","DOIUrl":null,"url":null,"abstract":"In the post Moore era, post-complementary metal–oxide–semiconductor (CMOS) technologies have received intense interests for possible future digital logic applications beyond the CMOS scaling limits. In the meantime, from the system perspective, non-von Neumann architectures, such as processing-in-memory (PIM), are extensively explored to overcome the bottleneck of modern computers, known as the memory wall, for high-performance energy-efficient integrated circuits. In this article, we propose functionally complete nonvolatile logic gates based on a two-transistor-two-resistive random access memory (RRAM) (2T2R) unit structure, which is then used to form a reconfigurable three-transistor-two-RRAM (3T2R) chain with programmable interconnects for complex combinational logic circuits, and a dense 3-D stacked memory array architecture. The design has a highly regular and symmetric structure, while operations are flexible yet simple, without the need of complicated peripheral circuitry or a third resistive state. Implementations of XNOR gate and full adder using 3T2R chain without extra routing/control gates or resistors are shown as demonstration examples of arithmetic unit design. The proposed computing scheme is intrinsic, efficient with superior performance in speed and area. Easily integrated as 3-D stacked array, the proposed memory architecture not only serves as regular 3-D memory array but also performs logic computation within the same layer and between the stacked layers. Concurrent computations under multiple computation modes for flexible operations in the memory are presented. Bias schemes for selected/half-selected/unselected cells are also explained and verified.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"84-92"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9969523/09893161.pdf","citationCount":"0","resultStr":"{\"title\":\"Scalable 2T2R Logic Computation Structure: Design From Digital Logic Circuits to 3-D Stacked Memory Arrays\",\"authors\":\"Zongxian Yang;Kangqiang Pan;Norman Y. Zhou;Lan Wei\",\"doi\":\"10.1109/JXCDC.2022.3206778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the post Moore era, post-complementary metal–oxide–semiconductor (CMOS) technologies have received intense interests for possible future digital logic applications beyond the CMOS scaling limits. In the meantime, from the system perspective, non-von Neumann architectures, such as processing-in-memory (PIM), are extensively explored to overcome the bottleneck of modern computers, known as the memory wall, for high-performance energy-efficient integrated circuits. In this article, we propose functionally complete nonvolatile logic gates based on a two-transistor-two-resistive random access memory (RRAM) (2T2R) unit structure, which is then used to form a reconfigurable three-transistor-two-RRAM (3T2R) chain with programmable interconnects for complex combinational logic circuits, and a dense 3-D stacked memory array architecture. The design has a highly regular and symmetric structure, while operations are flexible yet simple, without the need of complicated peripheral circuitry or a third resistive state. Implementations of XNOR gate and full adder using 3T2R chain without extra routing/control gates or resistors are shown as demonstration examples of arithmetic unit design. The proposed computing scheme is intrinsic, efficient with superior performance in speed and area. Easily integrated as 3-D stacked array, the proposed memory architecture not only serves as regular 3-D memory array but also performs logic computation within the same layer and between the stacked layers. Concurrent computations under multiple computation modes for flexible operations in the memory are presented. Bias schemes for selected/half-selected/unselected cells are also explained and verified.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":\"8 2\",\"pages\":\"84-92\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6570653/9969523/09893161.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9893161/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9893161/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在后摩尔时代,后互补金属氧化物半导体(CMOS)技术在超越CMOS缩放限制的未来数字逻辑应用中受到了极大的关注。与此同时,从系统的角度来看,非冯·诺依曼架构,如内存中处理(PIM),被广泛探索,以克服现代计算机的瓶颈,称为内存墙,用于高性能节能集成电路。在本文中,我们提出了基于双晶体管-双电阻随机存取存储器(RRAM) (2T2R)单元结构的功能完整的非易失性逻辑门,然后用于形成可重构的三晶体管-双随机存取存储器(3T2R)链,具有可编程的互连,用于复杂的组合逻辑电路,以及致密的3-D堆叠存储器阵列架构。该设计具有高度规则和对称的结构,而操作灵活而简单,不需要复杂的外围电路或第三电阻状态。采用3T2R链实现XNOR门和全加法器,不需要额外的路由/控制门或电阻,作为算术单元设计的演示示例。所提出的计算方案内在、高效,在速度和面积上具有优越的性能。该存储结构易于集成为三维堆叠阵列,不仅可以作为常规的三维存储阵列,而且可以在同一层内和堆叠层之间进行逻辑计算。提出了多种计算模式下的内存灵活操作并发计算。还解释和验证了选定/半选定/未选定细胞的偏置方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable 2T2R Logic Computation Structure: Design From Digital Logic Circuits to 3-D Stacked Memory Arrays
In the post Moore era, post-complementary metal–oxide–semiconductor (CMOS) technologies have received intense interests for possible future digital logic applications beyond the CMOS scaling limits. In the meantime, from the system perspective, non-von Neumann architectures, such as processing-in-memory (PIM), are extensively explored to overcome the bottleneck of modern computers, known as the memory wall, for high-performance energy-efficient integrated circuits. In this article, we propose functionally complete nonvolatile logic gates based on a two-transistor-two-resistive random access memory (RRAM) (2T2R) unit structure, which is then used to form a reconfigurable three-transistor-two-RRAM (3T2R) chain with programmable interconnects for complex combinational logic circuits, and a dense 3-D stacked memory array architecture. The design has a highly regular and symmetric structure, while operations are flexible yet simple, without the need of complicated peripheral circuitry or a third resistive state. Implementations of XNOR gate and full adder using 3T2R chain without extra routing/control gates or resistors are shown as demonstration examples of arithmetic unit design. The proposed computing scheme is intrinsic, efficient with superior performance in speed and area. Easily integrated as 3-D stacked array, the proposed memory architecture not only serves as regular 3-D memory array but also performs logic computation within the same layer and between the stacked layers. Concurrent computations under multiple computation modes for flexible operations in the memory are presented. Bias schemes for selected/half-selected/unselected cells are also explained and verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10 Front Cover Table of Contents INFORMATION FOR AUTHORS IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1