高压下含碱双碳酸盐的相变和可压缩性:第一性原理计算研究

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2022-08-02 DOI:10.1007/s00269-022-01210-9
Bingxu Hou, Shengxuan Huang, Shan Qin
{"title":"高压下含碱双碳酸盐的相变和可压缩性:第一性原理计算研究","authors":"Bingxu Hou,&nbsp;Shengxuan Huang,&nbsp;Shan Qin","doi":"10.1007/s00269-022-01210-9","DOIUrl":null,"url":null,"abstract":"<div><p>Here, we investigated high-pressure behaviors of four end-members of K-Na-Ca-Mg alkali-bearing double carbonates (K<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, Na<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, and Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>) using first-principles calculations up to ~ 25 GPa. For K<sub>2</sub>Mg, K<sub>2</sub>Ca, and Na<sub>2</sub>Mg double carbonates, the transitions from rhombohedral structures (<i>R</i> <span>\\(\\stackrel{\\mathrm{-}}{3}\\)</span> <i>m</i> or <i>R</i> <span>\\(\\stackrel{\\mathrm{-}}{3}\\)</span>) to monoclinic (<i>C</i>2/<i>m</i>) or triclinic (<i>P</i> <span>\\(\\stackrel{\\mathrm{-}}{1}\\)</span>) structures are predicted. While for Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, the <i>P</i>2<sub>1</sub><i>ca</i> structure remains stable across the calculated pressure range. But the high-pressure behavior of Na<sub>2</sub>Ca double carbonate has changed over 8 GPa: the <i>b</i>-axis becomes more compressible than <i>a</i>-axis; [CO<sub>3</sub>] –I groups tilt out of the <i>a</i>-<i>b</i> plane upon compression and reverse the direction of rotation at 8 GPa. The parameters for the equations of state of these minerals and their high-pressure phases were all theoretically determined. The predicted transformation is driven by the differences in the compressibility of structural units. The K<sup>+</sup> and Na<sup>+</sup> coordination polyhedra are more compressible in the structure, compared with the high axial rigidity of C–O bonds in the [CO<sub>3</sub>] triangle along the <i>a-b</i> plane. Our results provide projections of the high-pressure behaviors of trigonal double carbonates, in part by helping to clarify the relation among the average metallic ionic radius (<i>R</i><sub>avg</sub>), the bulk modulus (<i>K</i><sub>0</sub>), and the transition pressure (<i>P</i><sub>T</sub>). The transition pressure (<i>P</i><sub>T</sub>) is anticorrelated to the average metallic ionic radius (<i>R</i><sub>avg</sub>), and a larger <i>R</i><sub>avg</sub> results in a lower bulk modulus (<i>K</i><sub>0</sub>) for the trigonal double carbonates. Furthermore, alkali-bearing double carbonates found as inclusions in the natural diamond may indicate a hydrous parental medium composition and a deeper genesis mechanism.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transitions and compressibility of alkali-bearing double carbonates at high pressures: a first-principles calculations study\",\"authors\":\"Bingxu Hou,&nbsp;Shengxuan Huang,&nbsp;Shan Qin\",\"doi\":\"10.1007/s00269-022-01210-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here, we investigated high-pressure behaviors of four end-members of K-Na-Ca-Mg alkali-bearing double carbonates (K<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, Na<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, and Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>) using first-principles calculations up to ~ 25 GPa. For K<sub>2</sub>Mg, K<sub>2</sub>Ca, and Na<sub>2</sub>Mg double carbonates, the transitions from rhombohedral structures (<i>R</i> <span>\\\\(\\\\stackrel{\\\\mathrm{-}}{3}\\\\)</span> <i>m</i> or <i>R</i> <span>\\\\(\\\\stackrel{\\\\mathrm{-}}{3}\\\\)</span>) to monoclinic (<i>C</i>2/<i>m</i>) or triclinic (<i>P</i> <span>\\\\(\\\\stackrel{\\\\mathrm{-}}{1}\\\\)</span>) structures are predicted. While for Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, the <i>P</i>2<sub>1</sub><i>ca</i> structure remains stable across the calculated pressure range. But the high-pressure behavior of Na<sub>2</sub>Ca double carbonate has changed over 8 GPa: the <i>b</i>-axis becomes more compressible than <i>a</i>-axis; [CO<sub>3</sub>] –I groups tilt out of the <i>a</i>-<i>b</i> plane upon compression and reverse the direction of rotation at 8 GPa. The parameters for the equations of state of these minerals and their high-pressure phases were all theoretically determined. The predicted transformation is driven by the differences in the compressibility of structural units. The K<sup>+</sup> and Na<sup>+</sup> coordination polyhedra are more compressible in the structure, compared with the high axial rigidity of C–O bonds in the [CO<sub>3</sub>] triangle along the <i>a-b</i> plane. Our results provide projections of the high-pressure behaviors of trigonal double carbonates, in part by helping to clarify the relation among the average metallic ionic radius (<i>R</i><sub>avg</sub>), the bulk modulus (<i>K</i><sub>0</sub>), and the transition pressure (<i>P</i><sub>T</sub>). The transition pressure (<i>P</i><sub>T</sub>) is anticorrelated to the average metallic ionic radius (<i>R</i><sub>avg</sub>), and a larger <i>R</i><sub>avg</sub> results in a lower bulk modulus (<i>K</i><sub>0</sub>) for the trigonal double carbonates. Furthermore, alkali-bearing double carbonates found as inclusions in the natural diamond may indicate a hydrous parental medium composition and a deeper genesis mechanism.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"49 8\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-022-01210-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01210-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了K-Na-Ca-Mg双碱碳酸盐岩(K2Mg(CO3)2、K2Ca(CO3)2、Na2Mg(CO3)2和Na2Ca(CO3)2)四种端元在高达25 GPa的高压条件下的高压行为。对于K2Mg, K2Ca和Na2Mg双碳酸盐,预测了从菱形结构(R \(\stackrel{\mathrm{-}}{3}\) m或R \(\stackrel{\mathrm{-}}{3}\))到单斜(C2/m)或三斜(P \(\stackrel{\mathrm{-}}{1}\))结构的转变。而对于Na2Ca(CO3)2, P21ca结构在计算压力范围内保持稳定。但在8gpa以上,Na2Ca双碳酸盐岩的高压行为发生了变化:b轴比a轴更具压缩性;[CO3] -I基团在受压时倾斜出a-b平面,并在8gpa时反转旋转方向。这些矿物及其高压相的状态方程参数都是理论上确定的。预测的转换是由结构单元的可压缩性差异驱动的。与[CO3]三角形中C-O键沿a-b平面具有较高的轴向刚度相比,K+和Na+配位多面体在结构中具有更强的可压缩性。我们的研究结果提供了三角双碳酸盐高压行为的预测,部分是通过帮助澄清平均金属离子半径(Ravg)、体积模量(K0)和转变压力(PT)之间的关系。转变压力(PT)与平均金属离子半径(Ravg)不相关,较大的Ravg导致三角双碳酸盐的体积模量(K0)较低。此外,在天然金刚石包裹体中发现的含碱双碳酸盐可能表明含水母质组成和更深层次的成因机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase transitions and compressibility of alkali-bearing double carbonates at high pressures: a first-principles calculations study

Here, we investigated high-pressure behaviors of four end-members of K-Na-Ca-Mg alkali-bearing double carbonates (K2Mg(CO3)2, K2Ca(CO3)2, Na2Mg(CO3)2, and Na2Ca(CO3)2) using first-principles calculations up to ~ 25 GPa. For K2Mg, K2Ca, and Na2Mg double carbonates, the transitions from rhombohedral structures (R \(\stackrel{\mathrm{-}}{3}\) m or R \(\stackrel{\mathrm{-}}{3}\)) to monoclinic (C2/m) or triclinic (P \(\stackrel{\mathrm{-}}{1}\)) structures are predicted. While for Na2Ca(CO3)2, the P21ca structure remains stable across the calculated pressure range. But the high-pressure behavior of Na2Ca double carbonate has changed over 8 GPa: the b-axis becomes more compressible than a-axis; [CO3] –I groups tilt out of the a-b plane upon compression and reverse the direction of rotation at 8 GPa. The parameters for the equations of state of these minerals and their high-pressure phases were all theoretically determined. The predicted transformation is driven by the differences in the compressibility of structural units. The K+ and Na+ coordination polyhedra are more compressible in the structure, compared with the high axial rigidity of C–O bonds in the [CO3] triangle along the a-b plane. Our results provide projections of the high-pressure behaviors of trigonal double carbonates, in part by helping to clarify the relation among the average metallic ionic radius (Ravg), the bulk modulus (K0), and the transition pressure (PT). The transition pressure (PT) is anticorrelated to the average metallic ionic radius (Ravg), and a larger Ravg results in a lower bulk modulus (K0) for the trigonal double carbonates. Furthermore, alkali-bearing double carbonates found as inclusions in the natural diamond may indicate a hydrous parental medium composition and a deeper genesis mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Temperature-dependent infrared spectroscopy of OH defects in Verneuil-grown corundum (α-Al2O3) Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA High-pressure synthesis of rhenium carbide Re3C under megabar compression High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1