Jing Yang, Chengcheng Liu, Jie Huang, Dapeng Liu, Ting Ding, Jian-dong Zhu, Xia Li
{"title":"一种计算效率高的无源雷达目标角、时延和多普勒参数估计方法","authors":"Jing Yang, Chengcheng Liu, Jie Huang, Dapeng Liu, Ting Ding, Jian-dong Zhu, Xia Li","doi":"10.1155/2023/5551000","DOIUrl":null,"url":null,"abstract":"The azimuth, elevation, time delay (TD), and Doppler shift (DS) of the target echo signal are important parameters for target localization in passive radar. In this paper, for the problem of joint estimation of target azimuth, elevation, TD, and DS parameters in passive radar, a computationally efficient estimator is proposed based on segmented coherent integration and uniform circular array (UCA) interferometer direction finding. First, according to the parameters of the target motion and illuminators of opportunity, the reference and surveillance signals are divided into segments, with fast time within a segment and slow time across the segments; then, matching filtering along the fast time and fast Fourier transform (FFT) along the slow time are performed to accumulate the target echo energy to the same delay-Doppler cell; finally, the UCA interferometer two-dimensional direction finding is performed at the delay-Doppler cell where the target echo is located, to achieve the target azimuth and elevation estimate. Simulation results demonstrate that the proposed algorithm has low computational complexity, high real-time processing capability, and can achieve efficient and real-time estimation of the azimuth, elevation, TD, and DS parameters of weak target echoes in passive radar.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computationally Efficient Estimator for the Target Angle, Delay, and Doppler Parameters in Passive Radar\",\"authors\":\"Jing Yang, Chengcheng Liu, Jie Huang, Dapeng Liu, Ting Ding, Jian-dong Zhu, Xia Li\",\"doi\":\"10.1155/2023/5551000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The azimuth, elevation, time delay (TD), and Doppler shift (DS) of the target echo signal are important parameters for target localization in passive radar. In this paper, for the problem of joint estimation of target azimuth, elevation, TD, and DS parameters in passive radar, a computationally efficient estimator is proposed based on segmented coherent integration and uniform circular array (UCA) interferometer direction finding. First, according to the parameters of the target motion and illuminators of opportunity, the reference and surveillance signals are divided into segments, with fast time within a segment and slow time across the segments; then, matching filtering along the fast time and fast Fourier transform (FFT) along the slow time are performed to accumulate the target echo energy to the same delay-Doppler cell; finally, the UCA interferometer two-dimensional direction finding is performed at the delay-Doppler cell where the target echo is located, to achieve the target azimuth and elevation estimate. Simulation results demonstrate that the proposed algorithm has low computational complexity, high real-time processing capability, and can achieve efficient and real-time estimation of the azimuth, elevation, TD, and DS parameters of weak target echoes in passive radar.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5551000\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/5551000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Computationally Efficient Estimator for the Target Angle, Delay, and Doppler Parameters in Passive Radar
The azimuth, elevation, time delay (TD), and Doppler shift (DS) of the target echo signal are important parameters for target localization in passive radar. In this paper, for the problem of joint estimation of target azimuth, elevation, TD, and DS parameters in passive radar, a computationally efficient estimator is proposed based on segmented coherent integration and uniform circular array (UCA) interferometer direction finding. First, according to the parameters of the target motion and illuminators of opportunity, the reference and surveillance signals are divided into segments, with fast time within a segment and slow time across the segments; then, matching filtering along the fast time and fast Fourier transform (FFT) along the slow time are performed to accumulate the target echo energy to the same delay-Doppler cell; finally, the UCA interferometer two-dimensional direction finding is performed at the delay-Doppler cell where the target echo is located, to achieve the target azimuth and elevation estimate. Simulation results demonstrate that the proposed algorithm has low computational complexity, high real-time processing capability, and can achieve efficient and real-time estimation of the azimuth, elevation, TD, and DS parameters of weak target echoes in passive radar.
期刊介绍:
International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media.
As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.