O. Cook, Nancy Huang, R. Smithson, C. Kube, A. Beese, A. Argüelles
{"title":"粘结剂喷射增材制造组件孔隙率的超声表征","authors":"O. Cook, Nancy Huang, R. Smithson, C. Kube, A. Beese, A. Argüelles","doi":"10.32548/2022.me-04266","DOIUrl":null,"url":null,"abstract":"Binder jet metallic additive manufacturing (AM) is a popular alternative to powder bed fusion and directed energy deposition because of lower costs, elimination of thermal cycling, and lower energy consumption. However, like other metallic AM processes, binder jetting is prone to defects like porosity, which decreases the adoption of binder-jetted parts. Binder-jetted parts are sometimes infiltrated with a low melting temperature metal to fill pores during sintering; however, the infiltration is impacted by the part geometry and infiltration environment, which can cause infill nonuniformity. Furthermore, using an infiltration metal creates a complicated multiphase microstructure substantially different than common wrought materials and alloys. To bring insight to the binder jet/infiltration process toward part qualification and improved part quality, spatially dependent ultrasonic wave speed and attenuation techniques are being applied to help characterize and map porosity in parts made by binder jet AM. In this paper, measurements are conducted on binder-jetted stainless steel and stainless steel infiltrated with bronze samples. X-ray computed tomography (XCT) is used to provide an assessment of porosity.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ultrasonic Characterization of Porosity in Components Made by Binder Jet Additive Manufacturing\",\"authors\":\"O. Cook, Nancy Huang, R. Smithson, C. Kube, A. Beese, A. Argüelles\",\"doi\":\"10.32548/2022.me-04266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binder jet metallic additive manufacturing (AM) is a popular alternative to powder bed fusion and directed energy deposition because of lower costs, elimination of thermal cycling, and lower energy consumption. However, like other metallic AM processes, binder jetting is prone to defects like porosity, which decreases the adoption of binder-jetted parts. Binder-jetted parts are sometimes infiltrated with a low melting temperature metal to fill pores during sintering; however, the infiltration is impacted by the part geometry and infiltration environment, which can cause infill nonuniformity. Furthermore, using an infiltration metal creates a complicated multiphase microstructure substantially different than common wrought materials and alloys. To bring insight to the binder jet/infiltration process toward part qualification and improved part quality, spatially dependent ultrasonic wave speed and attenuation techniques are being applied to help characterize and map porosity in parts made by binder jet AM. In this paper, measurements are conducted on binder-jetted stainless steel and stainless steel infiltrated with bronze samples. X-ray computed tomography (XCT) is used to provide an assessment of porosity.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2022.me-04266\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2022.me-04266","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Ultrasonic Characterization of Porosity in Components Made by Binder Jet Additive Manufacturing
Binder jet metallic additive manufacturing (AM) is a popular alternative to powder bed fusion and directed energy deposition because of lower costs, elimination of thermal cycling, and lower energy consumption. However, like other metallic AM processes, binder jetting is prone to defects like porosity, which decreases the adoption of binder-jetted parts. Binder-jetted parts are sometimes infiltrated with a low melting temperature metal to fill pores during sintering; however, the infiltration is impacted by the part geometry and infiltration environment, which can cause infill nonuniformity. Furthermore, using an infiltration metal creates a complicated multiphase microstructure substantially different than common wrought materials and alloys. To bring insight to the binder jet/infiltration process toward part qualification and improved part quality, spatially dependent ultrasonic wave speed and attenuation techniques are being applied to help characterize and map porosity in parts made by binder jet AM. In this paper, measurements are conducted on binder-jetted stainless steel and stainless steel infiltrated with bronze samples. X-ray computed tomography (XCT) is used to provide an assessment of porosity.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.