连续油管钢LCF裂纹扩展的实验与数值研究

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanika Pub Date : 2022-10-21 DOI:10.5755/j02.mech.31056
J. Zhong, Guanghui Zhao, Litong Wang, Yi He, Siou-Han Hu
{"title":"连续油管钢LCF裂纹扩展的实验与数值研究","authors":"J. Zhong, Guanghui Zhao, Litong Wang, Yi He, Siou-Han Hu","doi":"10.5755/j02.mech.31056","DOIUrl":null,"url":null,"abstract":"Coiled tubing (CT) is a joint-less long oil pipe that is wound around a reel and can be run and pulled continuously. Due to the particularity of the operating process, low-cycle fatigue (LCF) failure of the CT constitutes the main production cost. Aiming at the characteristics of small diameter and thin wall of CT, a single-edge-notched (SEN) arc specimen was designed and machined. LCF tests were conducted with force-controlled mode. Cyclic softening of the CT steel was presented and crack growing rates were measured. Meanwhile, finite element simulation was carried out to obtain the relationships among J-integral, crack size and load. Based on the experimental and numerical results, the speed of the LCF crack growth of the CT steel is expressed as an explicit function of the J-integral. It provides a basis for predicting the LCF life of the CT under working conditions from the perspective of crack propagation.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Study on LCF Crack Propagation of Coiled Tubing Steel\",\"authors\":\"J. Zhong, Guanghui Zhao, Litong Wang, Yi He, Siou-Han Hu\",\"doi\":\"10.5755/j02.mech.31056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coiled tubing (CT) is a joint-less long oil pipe that is wound around a reel and can be run and pulled continuously. Due to the particularity of the operating process, low-cycle fatigue (LCF) failure of the CT constitutes the main production cost. Aiming at the characteristics of small diameter and thin wall of CT, a single-edge-notched (SEN) arc specimen was designed and machined. LCF tests were conducted with force-controlled mode. Cyclic softening of the CT steel was presented and crack growing rates were measured. Meanwhile, finite element simulation was carried out to obtain the relationships among J-integral, crack size and load. Based on the experimental and numerical results, the speed of the LCF crack growth of the CT steel is expressed as an explicit function of the J-integral. It provides a basis for predicting the LCF life of the CT under working conditions from the perspective of crack propagation.\",\"PeriodicalId\":54741,\"journal\":{\"name\":\"Mechanika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.mech.31056\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.31056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

连续油管(CT)是一种无接头的长油管,缠绕在卷筒上,可以连续下入和拉出。由于连续油管运行过程的特殊性,其低周疲劳失效是其主要的生产成本。针对CT直径小、壁薄的特点,设计并加工了单侧缺口电弧试件。LCF试验采用力控模式进行。研究了CT钢的循环软化过程,并测量了裂纹扩展速率。同时进行有限元模拟,得到j积分、裂纹尺寸与载荷之间的关系。基于实验和数值结果,将CT钢的LCF裂纹扩展速度表示为j积分的显式函数。为从裂纹扩展的角度预测CT在工作状态下的LCF寿命提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and Numerical Study on LCF Crack Propagation of Coiled Tubing Steel
Coiled tubing (CT) is a joint-less long oil pipe that is wound around a reel and can be run and pulled continuously. Due to the particularity of the operating process, low-cycle fatigue (LCF) failure of the CT constitutes the main production cost. Aiming at the characteristics of small diameter and thin wall of CT, a single-edge-notched (SEN) arc specimen was designed and machined. LCF tests were conducted with force-controlled mode. Cyclic softening of the CT steel was presented and crack growing rates were measured. Meanwhile, finite element simulation was carried out to obtain the relationships among J-integral, crack size and load. Based on the experimental and numerical results, the speed of the LCF crack growth of the CT steel is expressed as an explicit function of the J-integral. It provides a basis for predicting the LCF life of the CT under working conditions from the perspective of crack propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
期刊最新文献
Nonlinear vibration characteristics and bifurcation control of a class of piecewise constrained systems with dynamic clearances Model Updating Based on Bayesian Theory and Improved Objective Function Design and FEM Analysis of Plastic Parts of a Tie-Rod Composite Hydraulic Cylinder Real-Time Energy Consumption Sensing System in SMT Intelligent Workshop Research on Bionic Hierarchical Optimization of Wing Based on PLSR and PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1