{"title":"便携式振动光谱法可以区分草饲和谷饲牛肉","authors":"C. Coombs, Robert R Liddle, L. González","doi":"10.1177/09670335211049506","DOIUrl":null,"url":null,"abstract":"The present study analysed the ability for portable near infrared reflectance (NIR) and Raman spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean and fat surfaces of 108 beef steak samples labelled as grass-fed (n = 54) and grain-fed (n = 54), with partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman (fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIR spectroscopy moderately predicted DOF (r2val = 0.53), though Raman and NIR spectroscopy lean prediction models for DOF and marbling were less precise (r2val < 0.50). It can be concluded that portable NIR and Raman spectrometers can be used successfully to differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Portable vibrational spectroscopic methods can discriminate between grass-fed and grain-fed beef\",\"authors\":\"C. Coombs, Robert R Liddle, L. González\",\"doi\":\"10.1177/09670335211049506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study analysed the ability for portable near infrared reflectance (NIR) and Raman spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean and fat surfaces of 108 beef steak samples labelled as grass-fed (n = 54) and grain-fed (n = 54), with partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman (fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIR spectroscopy moderately predicted DOF (r2val = 0.53), though Raman and NIR spectroscopy lean prediction models for DOF and marbling were less precise (r2val < 0.50). It can be concluded that portable NIR and Raman spectrometers can be used successfully to differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335211049506\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211049506","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Portable vibrational spectroscopic methods can discriminate between grass-fed and grain-fed beef
The present study analysed the ability for portable near infrared reflectance (NIR) and Raman spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean and fat surfaces of 108 beef steak samples labelled as grass-fed (n = 54) and grain-fed (n = 54), with partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman (fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIR spectroscopy moderately predicted DOF (r2val = 0.53), though Raman and NIR spectroscopy lean prediction models for DOF and marbling were less precise (r2val < 0.50). It can be concluded that portable NIR and Raman spectrometers can be used successfully to differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.